arduinoFFT/Examples/FFT_speedup/FFT_speedup.ino

124 wiersze
3.8 KiB
C++

/*
Example of use of the FFT libray to compute FFT for a signal sampled through the ADC
with speedup through different arduinoFFT options. Based on examples/FFT_03/FFT_03.ino
Copyright (C) 2020 Bim Overbohm (template, speed improvements)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// There are two speedup options for some of the FFT code:
// Define this to use reciprocal multiplication for division and some more speedups that might decrease precision
//#define FFT_SPEED_OVER_PRECISION
// Define this to use a low-precision square root approximation instead of the regular sqrt() call
// This might only work for specific use cases, but is significantly faster. Only works for ArduinoFFT<float>.
//#define FFT_SQRT_APPROXIMATION
#include "arduinoFFT.h"
/*
These values can be changed in order to evaluate the functions
*/
#define CHANNEL A0
const uint16_t samples = 64; //This value MUST ALWAYS be a power of 2
const float samplingFrequency = 100; //Hz, must be less than 10000 due to ADC
unsigned int sampling_period_us;
unsigned long microseconds;
/*
These are the input and output vectors
Input vectors receive computed results from FFT
*/
float vReal[samples];
float vImag[samples];
/* Create FFT object with weighing factor storage */
ArduinoFFT<float> FFT = ArduinoFFT<float>(vReal, vImag, samples, samplingFrequency, true);
#define SCL_INDEX 0x00
#define SCL_TIME 0x01
#define SCL_FREQUENCY 0x02
#define SCL_PLOT 0x03
void setup()
{
sampling_period_us = round(1000000*(1.0/samplingFrequency));
Serial.begin(115200);
Serial.println("Ready");
}
void loop()
{
/*SAMPLING*/
microseconds = micros();
for(int i=0; i<samples; i++)
{
vReal[i] = analogRead(CHANNEL);
vImag[i] = 0;
while(micros() - microseconds < sampling_period_us){
//empty loop
}
microseconds += sampling_period_us;
}
/* Print the results of the sampling according to time */
Serial.println("Data:");
PrintVector(vReal, samples, SCL_TIME);
FFT.windowing(FFTWindow::Hamming, FFTDirection::Forward); /* Weigh data */
Serial.println("Weighed data:");
PrintVector(vReal, samples, SCL_TIME);
FFT.compute(FFTDirection::Forward); /* Compute FFT */
Serial.println("Computed Real values:");
PrintVector(vReal, samples, SCL_INDEX);
Serial.println("Computed Imaginary values:");
PrintVector(vImag, samples, SCL_INDEX);
FFT.complexToMagnitude(); /* Compute magnitudes */
Serial.println("Computed magnitudes:");
PrintVector(vReal, (samples >> 1), SCL_FREQUENCY);
float x = FFT.majorPeak();
Serial.println(x, 6); //Print out what frequency is the most dominant.
while(1); /* Run Once */
// delay(2000); /* Repeat after delay */
}
void PrintVector(float *vData, uint16_t bufferSize, uint8_t scaleType)
{
for (uint16_t i = 0; i < bufferSize; i++)
{
float abscissa;
/* Print abscissa value */
switch (scaleType)
{
case SCL_INDEX:
abscissa = (i * 1.0);
break;
case SCL_TIME:
abscissa = ((i * 1.0) / samplingFrequency);
break;
case SCL_FREQUENCY:
abscissa = ((i * 1.0 * samplingFrequency) / samples);
break;
}
Serial.print(abscissa, 6);
if(scaleType==SCL_FREQUENCY)
Serial.print("Hz");
Serial.print(" ");
Serial.println(vData[i], 4);
}
Serial.println();
}