- Better documentation of example.

pull/8/head
Enrique Condes 2014-07-19 22:43:58 -05:00
rodzic 81296ca08f
commit 0bb257ec70
1 zmienionych plików z 56 dodań i 47 usunięć

Wyświetl plik

@ -1,7 +1,7 @@
/* /*
Example of use of the FFT libray Example of use of the FFT libray
Copyright (C) 2011 Didier Longueville Copyright (C) 2014 Enrique Condes
This program is free software: you can redistribute it and/or modify This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -18,16 +18,16 @@
*/ */
#include "PlainFFT.h" #include "arduinoFFT.h"
PlainFFT FFT = PlainFFT(); /* Create FFT object */ arduinoFFT FFT = arduinoFFT(); /* Create FFT object */
/* /*
These values can be changed in order to evaluate the functions These values can be changed in order to evaluate the functions
*/ */
const uint16_t samples = 64; const uint16_t samples = 64; //This value MUST ALWAYS be a power of 2
double signalFrequency = 1000; double signalFrequency = 1000;
double samplingFrequency = 5000; double samplingFrequency = 5000;
uint8_t signalIntensity = 100; uint8_t amplitude = 100;
/* /*
These are the input and output vectors These are the input and output vectors
Input vectors receive computed results from FFT Input vectors receive computed results from FFT
@ -39,52 +39,61 @@ double vImag[samples];
#define SCL_TIME 0x01 #define SCL_TIME 0x01
#define SCL_FREQUENCY 0x02 #define SCL_FREQUENCY 0x02
void setup(){ void setup()
Serial.begin(115200); {
Serial.println("Ready"); Serial.begin(115200);
Serial.println("Ready");
} }
void loop() void loop()
{ {
/* Build raw data */ /* Build raw data */
double cycles = (((samples-1) * signalFrequency) / samplingFrequency); double cycles = (((samples-1) * signalFrequency) / samplingFrequency); //Number of signal cycles that the sampling will read
for (uint8_t i = 0; i < samples; i++) { for (uint8_t i = 0; i < samples; i++)
vReal[i] = uint8_t((signalIntensity * (sin((i * (6.2831 * cycles)) / samples) + 1.0)) / 2.0); {
} vReal[i] = uint8_t((amplitude * (sin((i * (6.2831 * cycles)) / samples))) / 2.0);/* Build data with positive and negative values*/
PrintVector(vReal, samples, SCL_TIME); //vReal[i] = uint8_t((amplitude * (sin((i * (6.2831 * cycles)) / samples) + 1.0)) / 2.0);/* Build data displaced on the Y axis to include only positive values*/
FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD); /* Weigh data */ }
PrintVector(vReal, samples, SCL_TIME); Serial.println("Data:");
FFT.Compute(vReal, vImag, samples, FFT_FORWARD); /* Compute FFT */ PrintVector(vReal, samples, SCL_TIME);
PrintVector(vReal, samples, SCL_INDEX); FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD); /* Weigh data */
PrintVector(vImag, samples, SCL_INDEX); Serial.println("Weighed data:");
FFT.ComplexToMagnitude(vReal, vImag, samples); /* Compute magnitudes */ PrintVector(vReal, samples, SCL_TIME);
PrintVector(vReal, (samples >> 1), SCL_FREQUENCY); FFT.Compute(vReal, vImag, samples, FFT_FORWARD); /* Compute FFT */
double x = FFT.MajorPeak(vReal, samples, samplingFrequency); Serial.println("Computed Real values:");
Serial.println(x, 6); PrintVector(vReal, samples, SCL_INDEX);
while(1); /* Run Once */ Serial.println("Computed Imaginary values:");
// delay(2000); /* Repeat after delay */ PrintVector(vImag, samples, SCL_INDEX);
FFT.ComplexToMagnitude(vReal, vImag, samples); /* Compute magnitudes */
PrintVector(vReal, (samples >> 1), SCL_FREQUENCY);
double x = FFT.MajorPeak(vReal, samples, samplingFrequency);
Serial.println(x, 6);
while(1); /* Run Once */
// delay(2000); /* Repeat after delay */
} }
void PrintVector(double *vData, uint8_t bufferSize, uint8_t scaleType) void PrintVector(double *vData, uint8_t bufferSize, uint8_t scaleType)
{ {
for (uint16_t i = 0; i < bufferSize; i++) { for (uint16_t i = 0; i < bufferSize; i++)
double abscissa; {
/* Print abscissa value */ double abscissa;
switch (scaleType) { /* Print abscissa value */
case SCL_INDEX: switch (scaleType)
abscissa = (i * 1.0); {
break; case SCL_INDEX:
case SCL_TIME: abscissa = (i * 1.0);
abscissa = ((i * 1.0) / samplingFrequency); break;
break; case SCL_TIME:
case SCL_FREQUENCY: abscissa = ((i * 1.0) / samplingFrequency);
abscissa = ((i * 1.0 * samplingFrequency) / samples); break;
break; case SCL_FREQUENCY:
} abscissa = ((i * 1.0 * samplingFrequency) / samples);
Serial.print(abscissa, 6); break;
Serial.print(" "); }
Serial.print(vData[i], 4); Serial.print(abscissa, 6);
Serial.println(); Serial.print(" ");
} Serial.print(vData[i], 4);
Serial.println(); Serial.println();
} }
Serial.println();
}