- Better documentation of example.

pull/8/head
Enrique Condes 2014-07-19 22:43:58 -05:00
rodzic 81296ca08f
commit 0bb257ec70
1 zmienionych plików z 56 dodań i 47 usunięć

Wyświetl plik

@ -1,7 +1,7 @@
/* /*
Example of use of the FFT libray Example of use of the FFT libray
Copyright (C) 2011 Didier Longueville Copyright (C) 2014 Enrique Condes
This program is free software: you can redistribute it and/or modify This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by it under the terms of the GNU General Public License as published by
@ -18,16 +18,16 @@
*/ */
#include "PlainFFT.h" #include "arduinoFFT.h"
PlainFFT FFT = PlainFFT(); /* Create FFT object */ arduinoFFT FFT = arduinoFFT(); /* Create FFT object */
/* /*
These values can be changed in order to evaluate the functions These values can be changed in order to evaluate the functions
*/ */
const uint16_t samples = 64; const uint16_t samples = 64; //This value MUST ALWAYS be a power of 2
double signalFrequency = 1000; double signalFrequency = 1000;
double samplingFrequency = 5000; double samplingFrequency = 5000;
uint8_t signalIntensity = 100; uint8_t amplitude = 100;
/* /*
These are the input and output vectors These are the input and output vectors
Input vectors receive computed results from FFT Input vectors receive computed results from FFT
@ -39,7 +39,8 @@ double vImag[samples];
#define SCL_TIME 0x01 #define SCL_TIME 0x01
#define SCL_FREQUENCY 0x02 #define SCL_FREQUENCY 0x02
void setup(){ void setup()
{
Serial.begin(115200); Serial.begin(115200);
Serial.println("Ready"); Serial.println("Ready");
} }
@ -47,15 +48,21 @@ void setup(){
void loop() void loop()
{ {
/* Build raw data */ /* Build raw data */
double cycles = (((samples-1) * signalFrequency) / samplingFrequency); double cycles = (((samples-1) * signalFrequency) / samplingFrequency); //Number of signal cycles that the sampling will read
for (uint8_t i = 0; i < samples; i++) { for (uint8_t i = 0; i < samples; i++)
vReal[i] = uint8_t((signalIntensity * (sin((i * (6.2831 * cycles)) / samples) + 1.0)) / 2.0); {
vReal[i] = uint8_t((amplitude * (sin((i * (6.2831 * cycles)) / samples))) / 2.0);/* Build data with positive and negative values*/
//vReal[i] = uint8_t((amplitude * (sin((i * (6.2831 * cycles)) / samples) + 1.0)) / 2.0);/* Build data displaced on the Y axis to include only positive values*/
} }
Serial.println("Data:");
PrintVector(vReal, samples, SCL_TIME); PrintVector(vReal, samples, SCL_TIME);
FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD); /* Weigh data */ FFT.Windowing(vReal, samples, FFT_WIN_TYP_HAMMING, FFT_FORWARD); /* Weigh data */
Serial.println("Weighed data:");
PrintVector(vReal, samples, SCL_TIME); PrintVector(vReal, samples, SCL_TIME);
FFT.Compute(vReal, vImag, samples, FFT_FORWARD); /* Compute FFT */ FFT.Compute(vReal, vImag, samples, FFT_FORWARD); /* Compute FFT */
Serial.println("Computed Real values:");
PrintVector(vReal, samples, SCL_INDEX); PrintVector(vReal, samples, SCL_INDEX);
Serial.println("Computed Imaginary values:");
PrintVector(vImag, samples, SCL_INDEX); PrintVector(vImag, samples, SCL_INDEX);
FFT.ComplexToMagnitude(vReal, vImag, samples); /* Compute magnitudes */ FFT.ComplexToMagnitude(vReal, vImag, samples); /* Compute magnitudes */
PrintVector(vReal, (samples >> 1), SCL_FREQUENCY); PrintVector(vReal, (samples >> 1), SCL_FREQUENCY);
@ -67,10 +74,12 @@ void loop()
void PrintVector(double *vData, uint8_t bufferSize, uint8_t scaleType) void PrintVector(double *vData, uint8_t bufferSize, uint8_t scaleType)
{ {
for (uint16_t i = 0; i < bufferSize; i++) { for (uint16_t i = 0; i < bufferSize; i++)
{
double abscissa; double abscissa;
/* Print abscissa value */ /* Print abscissa value */
switch (scaleType) { switch (scaleType)
{
case SCL_INDEX: case SCL_INDEX:
abscissa = (i * 1.0); abscissa = (i * 1.0);
break; break;