ai-python-wolverine/wolverine/wolverine.py

259 wiersze
8.0 KiB
Python

import difflib
import json
import os
import shutil
import subprocess
import sys
import openai
from dotenv import load_dotenv
from termcolor import cprint
"""
Relevants models, more can be added
"""
RELEVANT = ["gpt-3.5-turbo", "text-davinci-003", "text-davinci-002", "code-davinci-002"]
def get_api_key():
"""
Ask for the openAI key in command line if not set in .env
"""
global DEFAULT_MODEL, AVAILABLE_MODELS
load_dotenv()
if (os.getenv("OPENAI_API_KEY") == "your-api-key-here"):
load_dotenv()
key = input("Paste your openAI API key, or put it in the .env file:\n->")
os.environ["OPENAI_API_KEY"] = key
openai.api_key = os.getenv("OPENAI_API_KEY")
get_api_key()
AVAILABLE_MODELS = [x['id'] for x in openai.Model.list()["data"]]
DEFAULT_MODEL = os.environ.get("DEFAULT_MODEL", "gpt-4" if "gpt-4" in AVAILABLE_MODELS else "gpt-3.5-turbo")
def check_model_availability(model):
if model not in AVAILABLE_MODELS:
print(f"Model {model} is not available.Please try with another model. You can also configure a " "default model in the .env")
return False
return True
def model_choice(model):
"""
Ask for which model to choose in command line
"""
global DEFAULT_MODEL
models = [_ for _ in AVAILABLE_MODELS if _ in RELEVANT]
if (input(f"default model: {model}\nContinue? n to choose another model [y/n]") == 'n'):
while (1):
model_chose = input(f"Also available: {models}:\nWrite the model you want to chose ->")
DEFAULT_MODEL = model_chose
if (check_model_availability(DEFAULT_MODEL)):
print(f"Succesfully switched to {DEFAULT_MODEL}")
break
model_choice(DEFAULT_MODEL)
with open("prompt.txt", encoding="utf-8") as file:
SYSTEM_PROMPT = file.read()
def run_script(script_name, script_args):
"""
If script_name.endswith(".py") then run with python
else run with node
"""
script_args = [str(arg) for arg in script_args]
subprocess_args = (
[sys.executable, script_name, *script_args]
if script_name.endswith(".py")
else ["node", script_name, *script_args]
)
try:
result = subprocess.check_output(
subprocess_args,
stderr=subprocess.STDOUT
)
except subprocess.CalledProcessError as error:
return error.output.decode("utf-8"), error.returncode
return result.decode("utf-8"), 0
def json_validated_response(model, messages):
"""
This function is needed because the API can return a non-json response.
This will run recursively until a valid json response is returned.
todo: might want to stop after a certain number of retries
"""
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0.5,
)
messages.append(response.choices[0].message)
content = response.choices[0].message.content
# see if json can be parsed
try:
json_start_index = content.index(
"["
) # find the starting position of the JSON data
json_data = content[
json_start_index:
] # extract the JSON data from the response string
json_response = json.loads(json_data)
except (json.decoder.JSONDecodeError, ValueError) as error:
cprint(f"{error}. Re-running the query.", "red")
# debug
cprint(f"\nGPT RESPONSE:\n\n{content}\n\n", "yellow")
# append a user message that says the json is invalid
messages.append(
{
"role": "user",
"content": (
"Your response could not be parsed by json.loads. "
"Please restate your last message as pure JSON."
),
}
)
# rerun the api call
return json_validated_response(model, messages)
except Exception as error:
cprint(f"Unknown error: {error}", "red")
cprint(f"\nGPT RESPONSE:\n\n{content}\n\n", "yellow")
raise error
return json_response
def send_error_to_gpt(file_path, args, error_message, model=DEFAULT_MODEL):
with open(file_path) as f:
file_lines = f.readlines()
file_with_lines = []
for i, line in enumerate(file_lines):
file_with_lines.append(str(i + 1) + ": " + line)
file_with_lines = "".join(file_with_lines)
prompt = (
"Here is the script that needs fixing:\n\n"
f"{file_with_lines}\n\n"
"Here are the arguments it was provided:\n\n"
f"{args}\n\n"
"Here is the error message:\n\n"
f"{error_message}\n"
"Please provide your suggested changes, and remember to stick to the "
"exact format as described above."
)
# print(prompt)
messages = [
{
"role": "system",
"content": SYSTEM_PROMPT,
},
{
"role": "user",
"content": prompt,
},
]
return json_validated_response(model, messages)
def apply_changes(file_path, changes: list, confirm=False):
"""
Pass changes as loaded json (list of dicts)
"""
with open(file_path) as f:
original_file_lines = f.readlines()
# Filter out explanation elements
operation_changes = [change for change in changes if "operation" in change]
explanations = [
change["explanation"] for change in changes if "explanation" in change
]
# Sort the changes in reverse line order
operation_changes.sort(key=lambda x: x["line"], reverse=True)
file_lines = original_file_lines.copy()
for change in operation_changes:
operation = change["operation"]
line = change["line"]
content = change["content"]
if operation == "Replace":
file_lines[line - 1] = content + "\n"
elif operation == "Delete":
del file_lines[line - 1]
elif operation == "InsertAfter":
file_lines.insert(line, content + "\n")
# Print explanations
cprint("Explanations:", "blue")
for explanation in explanations:
cprint(f"- {explanation}", "blue")
# Display changes diff
print("\nChanges to be made:")
diff = difflib.unified_diff(original_file_lines, file_lines, lineterm="")
for line in diff:
if line.startswith("+"):
cprint(line, "green", end="")
elif line.startswith("-"):
cprint(line, "red", end="")
else:
print(line, end="")
if confirm:
# check if user wants to apply changes or exit
confirmation = input("Do you want to apply these changes? (y/n): ")
if confirmation.lower() != "y":
print("Changes not applied")
sys.exit(0)
with open(file_path, "w") as f:
f.writelines(file_lines)
print("Changes applied.")
def main(script_name, *script_args, revert=False, model=DEFAULT_MODEL, confirm=False):
if revert:
backup_file = script_name + ".bak"
if os.path.exists(backup_file):
shutil.copy(backup_file, script_name)
print(f"Reverted changes to {script_name}")
sys.exit(0)
else:
print(f"No backup file found for {script_name}")
sys.exit(1)
# check if model is available
check_model_availability(model)
# Make a backup of the original script
shutil.copy(script_name, script_name + ".bak")
while True:
output, returncode = run_script(script_name, script_args)
if returncode == 0:
cprint("Script ran successfully.", "blue")
print("Output:", output)
break
else:
cprint("Script crashed. Trying to fix...", "blue")
print("Output:", output)
json_response = send_error_to_gpt(
file_path=script_name,
args=script_args,
error_message=output,
model=model,
)
apply_changes(script_name, json_response, confirm=confirm)
cprint("Changes applied. Rerunning...", "blue")