kopia lustrzana https://github.com/biobootloader/wolverine
227 wiersze
6.8 KiB
Python
227 wiersze
6.8 KiB
Python
![]() |
import difflib
|
||
|
import json
|
||
|
import os
|
||
|
import shutil
|
||
|
import subprocess
|
||
|
import sys
|
||
|
import openai
|
||
|
from termcolor import cprint
|
||
![]() |
from dotenv import load_dotenv
|
||
|
|
||
![]() |
|
||
|
# Set up the OpenAI API
|
||
![]() |
load_dotenv()
|
||
![]() |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
||
![]() |
|
||
|
DEFAULT_MODEL = os.environ.get("DEFAULT_MODEL", "gpt-4")
|
||
|
|
||
|
|
||
|
with open("prompt.txt") as f:
|
||
|
SYSTEM_PROMPT = f.read()
|
||
![]() |
|
||
![]() |
|
||
![]() |
def run_script(script_name, script_args):
|
||
|
script_args = [str(arg) for arg in script_args]
|
||
![]() |
"""
|
||
|
If script_name.endswith(".py") then run with python
|
||
|
else run with node
|
||
|
"""
|
||
|
subprocess_args = (
|
||
|
[sys.executable, script_name, *script_args]
|
||
|
if script_name.endswith(".py")
|
||
|
else ["node", script_name, *script_args]
|
||
|
)
|
||
|
|
||
![]() |
try:
|
||
![]() |
result = subprocess.check_output(subprocess_args, stderr=subprocess.STDOUT)
|
||
![]() |
except subprocess.CalledProcessError as e:
|
||
|
return e.output.decode("utf-8"), e.returncode
|
||
|
return result.decode("utf-8"), 0
|
||
|
|
||
|
|
||
![]() |
def json_validated_response(model, messages):
|
||
|
"""
|
||
|
This function is needed because the API can return a non-json response.
|
||
|
This will run recursively until a valid json response is returned.
|
||
|
todo: might want to stop after a certain number of retries
|
||
|
"""
|
||
|
response = openai.ChatCompletion.create(
|
||
|
model=model,
|
||
|
messages=messages,
|
||
|
temperature=0.5,
|
||
|
)
|
||
|
messages.append(response.choices[0].message)
|
||
|
content = response.choices[0].message.content
|
||
|
# see if json can be parsed
|
||
![]() |
try:
|
||
![]() |
json_start_index = content.index(
|
||
|
"["
|
||
|
) # find the starting position of the JSON data
|
||
|
json_data = content[
|
||
|
json_start_index:
|
||
|
] # extract the JSON data from the response string
|
||
|
json_response = json.loads(json_data)
|
||
|
except (json.decoder.JSONDecodeError, ValueError) as e:
|
||
|
cprint(f"{e}. Re-running the query.", "red")
|
||
|
# debug
|
||
![]() |
cprint(f"\nGPT RESPONSE:\n\n{content}\n\n", "yellow")
|
||
![]() |
# append a user message that says the json is invalid
|
||
|
messages.append(
|
||
|
{
|
||
|
"role": "user",
|
||
![]() |
"content": (
|
||
|
"Your response could not be parsed by json.loads. "
|
||
|
"Please restate your last message as pure JSON."
|
||
|
),
|
||
![]() |
}
|
||
![]() |
)
|
||
![]() |
# rerun the api call
|
||
|
return json_validated_response(model, messages)
|
||
|
except Exception as e:
|
||
|
cprint(f"Unknown error: {e}", "red")
|
||
|
cprint(f"\nGPT RESPONSE:\n\n{content}\n\n", "yellow")
|
||
|
raise e
|
||
|
return json_response
|
||
![]() |
|
||
|
|
||
![]() |
def send_error_to_gpt(file_path, args, error_message, model=DEFAULT_MODEL):
|
||
![]() |
with open(file_path, "r") as f:
|
||
|
file_lines = f.readlines()
|
||
|
|
||
|
file_with_lines = []
|
||
|
for i, line in enumerate(file_lines):
|
||
|
file_with_lines.append(str(i + 1) + ": " + line)
|
||
|
file_with_lines = "".join(file_with_lines)
|
||
|
|
||
|
prompt = (
|
||
|
"Here is the script that needs fixing:\n\n"
|
||
|
f"{file_with_lines}\n\n"
|
||
|
"Here are the arguments it was provided:\n\n"
|
||
|
f"{args}\n\n"
|
||
|
"Here is the error message:\n\n"
|
||
|
f"{error_message}\n"
|
||
|
"Please provide your suggested changes, and remember to stick to the "
|
||
|
"exact format as described above."
|
||
|
)
|
||
|
|
||
|
# print(prompt)
|
||
![]() |
messages = [
|
||
|
{
|
||
|
"role": "system",
|
||
|
"content": SYSTEM_PROMPT,
|
||
|
},
|
||
|
{
|
||
|
"role": "user",
|
||
|
"content": prompt,
|
||
|
},
|
||
|
]
|
||
![]() |
|
||
![]() |
return json_validated_response(model, messages)
|
||
![]() |
|
||
|
|
||
![]() |
def apply_changes(file_path, changes: list, confirm=False):
|
||
![]() |
"""
|
||
|
Pass changes as loaded json (list of dicts)
|
||
|
"""
|
||
![]() |
with open(file_path, "r") as f:
|
||
|
original_file_lines = f.readlines()
|
||
|
|
||
|
# Filter out explanation elements
|
||
|
operation_changes = [change for change in changes if "operation" in change]
|
||
|
explanations = [
|
||
|
change["explanation"] for change in changes if "explanation" in change
|
||
|
]
|
||
|
|
||
|
# Sort the changes in reverse line order
|
||
|
operation_changes.sort(key=lambda x: x["line"], reverse=True)
|
||
|
|
||
|
file_lines = original_file_lines.copy()
|
||
|
for change in operation_changes:
|
||
|
operation = change["operation"]
|
||
|
line = change["line"]
|
||
|
content = change["content"]
|
||
|
|
||
|
if operation == "Replace":
|
||
|
file_lines[line - 1] = content + "\n"
|
||
|
elif operation == "Delete":
|
||
|
del file_lines[line - 1]
|
||
|
elif operation == "InsertAfter":
|
||
|
file_lines.insert(line, content + "\n")
|
||
|
|
||
|
# Print explanations
|
||
|
cprint("Explanations:", "blue")
|
||
|
for explanation in explanations:
|
||
|
cprint(f"- {explanation}", "blue")
|
||
|
|
||
![]() |
# Display changes diff
|
||
|
print("\nChanges to be made:")
|
||
![]() |
diff = difflib.unified_diff(original_file_lines, file_lines, lineterm="")
|
||
|
for line in diff:
|
||
|
if line.startswith("+"):
|
||
|
cprint(line, "green", end="")
|
||
|
elif line.startswith("-"):
|
||
|
cprint(line, "red", end="")
|
||
|
else:
|
||
|
print(line, end="")
|
||
|
|
||
![]() |
if confirm:
|
||
![]() |
# check if user wants to apply changes or exit
|
||
![]() |
confirmation = input("Do you want to apply these changes? (y/n): ")
|
||
|
if confirmation.lower() != "y":
|
||
|
print("Changes not applied")
|
||
|
sys.exit(0)
|
||
|
|
||
![]() |
with open(file_path, "w") as f:
|
||
|
f.writelines(file_lines)
|
||
![]() |
print("Changes applied.")
|
||
|
|
||
![]() |
|
||
![]() |
def check_model_availability(model):
|
||
|
available_models = [x['id'] for x in openai.Model.list()["data"]]
|
||
|
if model not in available_models:
|
||
|
print(
|
||
|
f"Model {model} is not available. Perhaps try running with "
|
||
|
"`--model=gpt-3.5-turbo` instead? You can also configure a "
|
||
|
"default model in the .env"
|
||
|
)
|
||
|
exit()
|
||
|
|
||
|
|
||
![]() |
def main(script_name, *script_args, revert=False, model=DEFAULT_MODEL, confirm=False):
|
||
![]() |
if revert:
|
||
![]() |
backup_file = script_name + ".bak"
|
||
|
if os.path.exists(backup_file):
|
||
|
shutil.copy(backup_file, script_name)
|
||
|
print(f"Reverted changes to {script_name}")
|
||
|
sys.exit(0)
|
||
|
else:
|
||
|
print(f"No backup file found for {script_name}")
|
||
|
sys.exit(1)
|
||
|
|
||
![]() |
# check if model is available
|
||
|
check_model_availability(model)
|
||
|
|
||
![]() |
# Make a backup of the original script
|
||
|
shutil.copy(script_name, script_name + ".bak")
|
||
|
|
||
|
while True:
|
||
![]() |
output, returncode = run_script(script_name, script_args)
|
||
![]() |
|
||
|
if returncode == 0:
|
||
|
cprint("Script ran successfully.", "blue")
|
||
|
print("Output:", output)
|
||
|
break
|
||
![]() |
|
||
![]() |
else:
|
||
|
cprint("Script crashed. Trying to fix...", "blue")
|
||
|
print("Output:", output)
|
||
![]() |
json_response = send_error_to_gpt(
|
||
![]() |
file_path=script_name,
|
||
|
args=script_args,
|
||
|
error_message=output,
|
||
|
model=model,
|
||
![]() |
)
|
||
![]() |
|
||
![]() |
apply_changes(script_name, json_response, confirm=confirm)
|
||
![]() |
cprint("Changes applied. Rerunning...", "blue")
|