WLED/usermods/usermod_v2_rotary_encoder_ui/usermod_v2_rotary_encoder_ui.h

497 wiersze
15 KiB
C++

#pragma once
#include "wled.h"
//
// Inspired by the v1 usermods
// * rotary_encoder_change_brightness
// * rotary_encoder_change_effect
//
// v2 usermod that provides a rotary encoder-based UI.
//
// This usermod allows you to control:
//
// * Brightness
// * Selected Effect
// * Effect Speed
// * Effect Intensity
// * Palette
//
// Change between modes by pressing a button.
//
// Dependencies
// * This usermod REQURES the ModeSortUsermod
// * This Usermod works best coupled with
// FourLineDisplayUsermod.
//
#ifndef ENCODER_DT_PIN
#define ENCODER_DT_PIN 12
#endif
#ifndef ENCODER_CLK_PIN
#define ENCODER_CLK_PIN 14
#endif
#ifndef ENCODER_SW_PIN
#define ENCODER_SW_PIN 13
#endif
#ifndef USERMOD_FOUR_LINE_DISPLAY
// These constants won't be defined if we aren't using FourLineDisplay.
#define FLD_LINE_BRIGHTNESS 0
#define FLD_LINE_MODE 0
#define FLD_LINE_EFFECT_SPEED 0
#define FLD_LINE_EFFECT_INTENSITY 0
#define FLD_LINE_PALETTE 0
#endif
// The last UI state
#define LAST_UI_STATE 4
class RotaryEncoderUIUsermod : public Usermod {
private:
int fadeAmount = 10; // Amount to change every step (brightness)
unsigned long currentTime;
unsigned long loopTime;
int8_t pinA = ENCODER_DT_PIN; // DT from encoder
int8_t pinB = ENCODER_CLK_PIN; // CLK from encoder
int8_t pinC = ENCODER_SW_PIN; // SW from encoder
unsigned char select_state = 0; // 0: brightness, 1: effect, 2: effect speed
unsigned char button_state = HIGH;
unsigned char prev_button_state = HIGH;
#ifdef USERMOD_FOUR_LINE_DISPLAY
FourLineDisplayUsermod *display;
#else
void* display = nullptr;
#endif
byte *modes_alpha_indexes = nullptr;
byte *palettes_alpha_indexes = nullptr;
unsigned char Enc_A;
unsigned char Enc_B;
unsigned char Enc_A_prev = 0;
bool currentEffectAndPaletteInitialized = false;
uint8_t effectCurrentIndex = 0;
uint8_t effectPaletteIndex = 0;
bool initDone = false;
bool enabled = true;
// strings to reduce flash memory usage (used more than twice)
static const char _name[];
static const char _enabled[];
static const char _DT_pin[];
static const char _CLK_pin[];
static const char _SW_pin[];
public:
/*
* setup() is called once at boot. WiFi is not yet connected at this point.
* You can use it to initialize variables, sensors or similar.
*/
void setup()
{
DEBUG_PRINTLN(F("Usermod Rotary Encoder init."));
PinManagerPinType pins[3] = { { pinA, false }, { pinB, false }, { pinC, false } };
if (!pinManager.allocateMultiplePins(pins, 3, PinOwner::UM_RotaryEncoderUI)) {
// BUG: configuring this usermod with conflicting pins
// will cause it to de-allocate pins it does not own
// (at second config)
// This is the exact type of bug solved by pinManager
// tracking the owner tags....
pinA = pinB = pinC = -1;
enabled = false;
return;
}
#ifndef USERMOD_ROTARY_ENCODER_GPIO
#define USERMOD_ROTARY_ENCODER_GPIO INPUT_PULLUP
#endif
pinMode(pinA, USERMOD_ROTARY_ENCODER_GPIO);
pinMode(pinB, USERMOD_ROTARY_ENCODER_GPIO);
pinMode(pinC, USERMOD_ROTARY_ENCODER_GPIO);
currentTime = millis();
loopTime = currentTime;
ModeSortUsermod *modeSortUsermod = (ModeSortUsermod*) usermods.lookup(USERMOD_ID_MODE_SORT);
modes_alpha_indexes = modeSortUsermod->getModesAlphaIndexes();
palettes_alpha_indexes = modeSortUsermod->getPalettesAlphaIndexes();
#ifdef USERMOD_FOUR_LINE_DISPLAY
// This Usermod uses FourLineDisplayUsermod for the best experience.
// But it's optional. But you want it.
display = (FourLineDisplayUsermod*) usermods.lookup(USERMOD_ID_FOUR_LINE_DISP);
if (display != nullptr) {
display->setLineType(FLD_LINE_BRIGHTNESS);
display->setMarkLine(3);
}
#endif
initDone = true;
}
/*
* connected() is called every time the WiFi is (re)connected
* Use it to initialize network interfaces
*/
void connected()
{
//Serial.println("Connected to WiFi!");
}
/*
* loop() is called continuously. Here you can check for events, read sensors, etc.
*
* Tips:
* 1. You can use "if (WLED_CONNECTED)" to check for a successful network connection.
* Additionally, "if (WLED_MQTT_CONNECTED)" is available to check for a connection to an MQTT broker.
*
* 2. Try to avoid using the delay() function. NEVER use delays longer than 10 milliseconds.
* Instead, use a timer check as shown here.
*/
void loop()
{
if (!enabled) return;
currentTime = millis(); // get the current elapsed time
// Initialize effectCurrentIndex and effectPaletteIndex to
// current state. We do it here as (at least) effectCurrent
// is not yet initialized when setup is called.
if (!currentEffectAndPaletteInitialized) {
findCurrentEffectAndPalette();
}
if (currentTime >= (loopTime + 2)) // 2ms since last check of encoder = 500Hz
{
button_state = digitalRead(pinC);
if (prev_button_state != button_state)
{
if (button_state == LOW)
{
prev_button_state = button_state;
char newState = select_state + 1;
if (newState > LAST_UI_STATE) newState = 0;
bool changedState = true;
if (display != nullptr) {
switch(newState) {
case 0:
changedState = changeState("Brightness", FLD_LINE_BRIGHTNESS, 3);
break;
case 1:
changedState = changeState("Select FX", FLD_LINE_MODE, 2);
break;
case 2:
changedState = changeState("FX Speed", FLD_LINE_EFFECT_SPEED, 3);
break;
case 3:
changedState = changeState("FX Intensity", FLD_LINE_EFFECT_INTENSITY, 3);
break;
case 4:
changedState = changeState("Palette", FLD_LINE_PALETTE, 3);
break;
}
}
if (changedState) {
select_state = newState;
}
}
else
{
prev_button_state = button_state;
}
}
int Enc_A = digitalRead(pinA); // Read encoder pins
int Enc_B = digitalRead(pinB);
if ((!Enc_A) && (Enc_A_prev))
{ // A has gone from high to low
if (Enc_B == HIGH)
{ // B is high so clockwise
switch(select_state) {
case 0:
changeBrightness(true);
break;
case 1:
changeEffect(true);
break;
case 2:
changeEffectSpeed(true);
break;
case 3:
changeEffectIntensity(true);
break;
case 4:
changePalette(true);
break;
}
}
else if (Enc_B == LOW)
{ // B is low so counter-clockwise
switch(select_state) {
case 0:
changeBrightness(false);
break;
case 1:
changeEffect(false);
break;
case 2:
changeEffectSpeed(false);
break;
case 3:
changeEffectIntensity(false);
break;
case 4:
changePalette(false);
break;
}
}
}
Enc_A_prev = Enc_A; // Store value of A for next time
loopTime = currentTime; // Updates loopTime
}
}
void findCurrentEffectAndPalette() {
currentEffectAndPaletteInitialized = true;
for (uint8_t i = 0; i < strip.getModeCount(); i++) {
//byte value = modes_alpha_indexes[i];
if (modes_alpha_indexes[i] == effectCurrent) {
effectCurrentIndex = i;
break;
}
}
for (uint8_t i = 0; i < strip.getPaletteCount(); i++) {
//byte value = palettes_alpha_indexes[i];
if (palettes_alpha_indexes[i] == strip.getSegment(0).palette) {
effectPaletteIndex = i;
break;
}
}
}
boolean changeState(const char *stateName, byte lineThreeMode, byte markedLine) {
#ifdef USERMOD_FOUR_LINE_DISPLAY
if (display != nullptr) {
if (display->wakeDisplay()) {
// Throw away wake up input
return false;
}
display->overlay("Mode change", stateName, 1500);
display->setLineType(lineThreeMode);
display->setMarkLine(markedLine);
}
#endif
return true;
}
void lampUdated() {
colorUpdated(CALL_MODE_BUTTON);
updateInterfaces(CALL_MODE_BUTTON);
}
void changeBrightness(bool increase) {
#ifdef USERMOD_FOUR_LINE_DISPLAY
if (display && display->wakeDisplay()) {
// Throw away wake up input
return;
}
#endif
if (increase) {
bri = (bri + fadeAmount <= 255) ? (bri + fadeAmount) : 255;
}
else {
bri = (bri - fadeAmount >= 0) ? (bri - fadeAmount) : 0;
}
lampUdated();
}
void changeEffect(bool increase) {
#ifdef USERMOD_FOUR_LINE_DISPLAY
if (display && display->wakeDisplay()) {
// Throw away wake up input
return;
}
#endif
if (increase) {
effectCurrentIndex = (effectCurrentIndex + 1 >= strip.getModeCount()) ? 0 : (effectCurrentIndex + 1);
}
else {
effectCurrentIndex = (effectCurrentIndex - 1 < 0) ? (strip.getModeCount() - 1) : (effectCurrentIndex - 1);
}
effectCurrent = modes_alpha_indexes[effectCurrentIndex];
lampUdated();
}
void changeEffectSpeed(bool increase) {
#ifdef USERMOD_FOUR_LINE_DISPLAY
if (display && display->wakeDisplay()) {
// Throw away wake up input
return;
}
#endif
if (increase) {
effectSpeed = (effectSpeed + fadeAmount <= 255) ? (effectSpeed + fadeAmount) : 255;
}
else {
effectSpeed = (effectSpeed - fadeAmount >= 0) ? (effectSpeed - fadeAmount) : 0;
}
lampUdated();
}
void changeEffectIntensity(bool increase) {
#ifdef USERMOD_FOUR_LINE_DISPLAY
if (display && display->wakeDisplay()) {
// Throw away wake up input
return;
}
#endif
if (increase) {
effectIntensity = (effectIntensity + fadeAmount <= 255) ? (effectIntensity + fadeAmount) : 255;
}
else {
effectIntensity = (effectIntensity - fadeAmount >= 0) ? (effectIntensity - fadeAmount) : 0;
}
lampUdated();
}
void changePalette(bool increase) {
#ifdef USERMOD_FOUR_LINE_DISPLAY
if (display && display->wakeDisplay()) {
// Throw away wake up input
return;
}
#endif
if (increase) {
effectPaletteIndex = (effectPaletteIndex + 1 >= strip.getPaletteCount()) ? 0 : (effectPaletteIndex + 1);
}
else {
effectPaletteIndex = (effectPaletteIndex - 1 < 0) ? (strip.getPaletteCount() - 1) : (effectPaletteIndex - 1);
}
effectPalette = palettes_alpha_indexes[effectPaletteIndex];
lampUdated();
}
/*
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
* Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI.
* Below it is shown how this could be used for e.g. a light sensor
*/
/*
void addToJsonInfo(JsonObject& root)
{
int reading = 20;
//this code adds "u":{"Light":[20," lux"]} to the info object
JsonObject user = root["u"];
if (user.isNull()) user = root.createNestedObject("u");
JsonArray lightArr = user.createNestedArray("Light"); //name
lightArr.add(reading); //value
lightArr.add(" lux"); //unit
}
*/
/*
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void addToJsonState(JsonObject &root)
{
//root["user0"] = userVar0;
}
/*
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void readFromJsonState(JsonObject &root)
{
//userVar0 = root["user0"] | userVar0; //if "user0" key exists in JSON, update, else keep old value
//if (root["bri"] == 255) Serial.println(F("Don't burn down your garage!"));
}
/**
* addToConfig() (called from set.cpp) stores persistent properties to cfg.json
*/
void addToConfig(JsonObject &root) {
// we add JSON object: {"Rotary-Encoder":{"DT-pin":12,"CLK-pin":14,"SW-pin":13}}
JsonObject top = root.createNestedObject(FPSTR(_name)); // usermodname
top[FPSTR(_enabled)] = enabled;
top[FPSTR(_DT_pin)] = pinA;
top[FPSTR(_CLK_pin)] = pinB;
top[FPSTR(_SW_pin)] = pinC;
DEBUG_PRINTLN(F("Rotary Encoder config saved."));
}
/**
* readFromConfig() is called before setup() to populate properties from values stored in cfg.json
*
* The function should return true if configuration was successfully loaded or false if there was no configuration.
*/
bool readFromConfig(JsonObject &root) {
// we look for JSON object: {"Rotary-Encoder":{"DT-pin":12,"CLK-pin":14,"SW-pin":13}}
JsonObject top = root[FPSTR(_name)];
if (top.isNull()) {
DEBUG_PRINT(FPSTR(_name));
DEBUG_PRINTLN(F(": No config found. (Using defaults.)"));
return false;
}
int8_t newDTpin = top[FPSTR(_DT_pin)] | pinA;
int8_t newCLKpin = top[FPSTR(_CLK_pin)] | pinB;
int8_t newSWpin = top[FPSTR(_SW_pin)] | pinC;
enabled = top[FPSTR(_enabled)] | enabled;
DEBUG_PRINT(FPSTR(_name));
if (!initDone) {
// first run: reading from cfg.json
pinA = newDTpin;
pinB = newCLKpin;
pinC = newSWpin;
DEBUG_PRINTLN(F(" config loaded."));
} else {
DEBUG_PRINTLN(F(" config (re)loaded."));
// changing parameters from settings page
if (pinA!=newDTpin || pinB!=newCLKpin || pinC!=newSWpin) {
pinManager.deallocatePin(pinA, PinOwner::UM_RotaryEncoderUI);
pinManager.deallocatePin(pinB, PinOwner::UM_RotaryEncoderUI);
pinManager.deallocatePin(pinC, PinOwner::UM_RotaryEncoderUI);
pinA = newDTpin;
pinB = newCLKpin;
pinC = newSWpin;
if (pinA<0 || pinB<0 || pinC<0) {
enabled = false;
return true;
}
setup();
}
}
// use "return !top["newestParameter"].isNull();" when updating Usermod with new features
return !top[FPSTR(_enabled)].isNull();
}
/*
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
* This could be used in the future for the system to determine whether your usermod is installed.
*/
uint16_t getId()
{
return USERMOD_ID_ROTARY_ENC_UI;
}
};
// strings to reduce flash memory usage (used more than twice)
const char RotaryEncoderUIUsermod::_name[] PROGMEM = "Rotary-Encoder";
const char RotaryEncoderUIUsermod::_enabled[] PROGMEM = "enabled";
const char RotaryEncoderUIUsermod::_DT_pin[] PROGMEM = "DT-pin";
const char RotaryEncoderUIUsermod::_CLK_pin[] PROGMEM = "CLK-pin";
const char RotaryEncoderUIUsermod::_SW_pin[] PROGMEM = "SW-pin";