WLED/wled00/wled.cpp

1043 wiersze
34 KiB
C++

#define WLED_DEFINE_GLOBAL_VARS //only in one source file, wled.cpp!
#include "wled.h"
#include "wled_ethernet.h"
#include <Arduino.h>
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET)
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#endif
/*
* Main WLED class implementation. Mostly initialization and connection logic
*/
WLED::WLED()
{
}
// turns all LEDs off and restarts ESP
void WLED::reset()
{
briT = 0;
#ifdef WLED_ENABLE_WEBSOCKETS
ws.closeAll(1012);
#endif
unsigned long dly = millis();
while (millis() - dly < 450) {
yield(); // enough time to send response to client
}
applyBri();
DEBUG_PRINTLN(F("WLED RESET"));
ESP.restart();
}
void WLED::loop()
{
static uint32_t lastHeap = UINT32_MAX;
static unsigned long heapTime = 0;
#ifdef WLED_DEBUG
static unsigned long lastRun = 0;
unsigned long loopMillis = millis();
size_t loopDelay = loopMillis - lastRun;
if (lastRun == 0) loopDelay=0; // startup - don't have valid data from last run.
if (loopDelay > 2) DEBUG_PRINTF_P(PSTR("Loop delayed more than %ums.\n"), loopDelay);
static unsigned long maxLoopMillis = 0;
static size_t avgLoopMillis = 0;
static unsigned long maxUsermodMillis = 0;
static size_t avgUsermodMillis = 0;
static unsigned long maxStripMillis = 0;
static size_t avgStripMillis = 0;
unsigned long stripMillis;
#endif
handleTime();
#ifndef WLED_DISABLE_INFRARED
handleIR(); // 2nd call to function needed for ESP32 to return valid results -- should be good for ESP8266, too
#endif
handleConnection();
handleSerial();
handleImprovWifiScan();
handleNotifications();
handleTransitions();
#ifdef WLED_ENABLE_DMX
handleDMX();
#endif
#ifdef WLED_DEBUG
unsigned long usermodMillis = millis();
#endif
userLoop();
usermods.loop();
#ifdef WLED_DEBUG
usermodMillis = millis() - usermodMillis;
avgUsermodMillis += usermodMillis;
if (usermodMillis > maxUsermodMillis) maxUsermodMillis = usermodMillis;
#endif
yield();
handleIO();
#ifndef WLED_DISABLE_INFRARED
handleIR();
#endif
#ifndef WLED_DISABLE_ALEXA
handleAlexa();
#endif
if (doCloseFile) {
closeFile();
yield();
}
#ifdef WLED_DEBUG
stripMillis = millis();
#endif
if (!realtimeMode || realtimeOverride || (realtimeMode && useMainSegmentOnly)) // block stuff if WARLS/Adalight is enabled
{
if (apActive) dnsServer.processNextRequest();
#ifndef WLED_DISABLE_OTA
if (WLED_CONNECTED && aOtaEnabled && !otaLock && correctPIN) ArduinoOTA.handle();
#endif
handleNightlight();
handlePlaylist();
yield();
#ifndef WLED_DISABLE_HUESYNC
handleHue();
yield();
#endif
handlePresets();
yield();
if (!offMode || strip.isOffRefreshRequired() || strip.needsUpdate())
strip.service();
#ifdef ESP8266
else if (!noWifiSleep)
delay(1); //required to make sure ESP enters modem sleep (see #1184)
#endif
}
#ifdef WLED_DEBUG
stripMillis = millis() - stripMillis;
avgStripMillis += stripMillis;
if (stripMillis > maxStripMillis) maxStripMillis = stripMillis;
#endif
yield();
#ifdef ESP8266
MDNS.update();
#endif
//millis() rolls over every 50 days
if (lastMqttReconnectAttempt > millis()) {
rolloverMillis++;
lastMqttReconnectAttempt = 0;
ntpLastSyncTime = NTP_NEVER; // force new NTP query
strip.restartRuntime();
}
if (millis() - lastMqttReconnectAttempt > 30000 || lastMqttReconnectAttempt == 0) { // lastMqttReconnectAttempt==0 forces immediate broadcast
lastMqttReconnectAttempt = millis();
#ifndef WLED_DISABLE_MQTT
initMqtt();
#endif
yield();
// refresh WLED nodes list
refreshNodeList();
if (nodeBroadcastEnabled) sendSysInfoUDP();
yield();
}
// 15min PIN time-out
if (strlen(settingsPIN)>0 && correctPIN && millis() - lastEditTime > PIN_TIMEOUT) {
correctPIN = false;
createEditHandler(false);
}
// reconnect WiFi to clear stale allocations if heap gets too low
if (millis() - heapTime > 15000) {
uint32_t heap = ESP.getFreeHeap();
if (heap < MIN_HEAP_SIZE && lastHeap < MIN_HEAP_SIZE) {
DEBUG_PRINT(F("Heap too low! ")); DEBUG_PRINTLN(heap);
forceReconnect = true;
strip.resetSegments(); // remove all but one segments from memory
} else if (heap < MIN_HEAP_SIZE) {
DEBUG_PRINTLN(F("Heap low, purging segments."));
strip.purgeSegments();
}
lastHeap = heap;
heapTime = millis();
}
//LED settings have been saved, re-init busses
//This code block causes severe FPS drop on ESP32 with the original "if (busConfigs[0] != nullptr)" conditional. Investigate!
if (doInitBusses) {
doInitBusses = false;
DEBUG_PRINTLN(F("Re-init busses."));
bool aligned = strip.checkSegmentAlignment(); //see if old segments match old bus(ses)
BusManager::removeAll();
uint32_t mem = 0, globalBufMem = 0;
uint16_t maxlen = 0;
for (uint8_t i = 0; i < WLED_MAX_BUSSES+WLED_MIN_VIRTUAL_BUSSES; i++) {
if (busConfigs[i] == nullptr) break;
mem += BusManager::memUsage(*busConfigs[i]);
if (useGlobalLedBuffer && busConfigs[i]->start + busConfigs[i]->count > maxlen) {
maxlen = busConfigs[i]->start + busConfigs[i]->count;
globalBufMem = maxlen * 4;
}
if (mem + globalBufMem <= MAX_LED_MEMORY) {
BusManager::add(*busConfigs[i]);
}
delete busConfigs[i]; busConfigs[i] = nullptr;
}
strip.finalizeInit(); // also loads default ledmap if present
if (aligned) strip.makeAutoSegments();
else strip.fixInvalidSegments();
doSerializeConfig = true;
}
if (loadLedmap >= 0) {
strip.deserializeMap(loadLedmap);
loadLedmap = -1;
}
yield();
if (doSerializeConfig) serializeConfig();
yield();
handleWs();
#if defined(STATUSLED)
handleStatusLED();
#endif
toki.resetTick();
#if WLED_WATCHDOG_TIMEOUT > 0
// we finished our mainloop, reset the watchdog timer
static unsigned long lastWDTFeed = 0;
if (!strip.isUpdating() || millis() - lastWDTFeed > (WLED_WATCHDOG_TIMEOUT*500)) {
#ifdef ARDUINO_ARCH_ESP32
esp_task_wdt_reset();
#else
ESP.wdtFeed();
#endif
lastWDTFeed = millis();
}
#endif
if (doReboot && (!doInitBusses || !doSerializeConfig)) // if busses have to be inited & saved, wait until next iteration
reset();
// DEBUG serial logging (every 30s)
#ifdef WLED_DEBUG
loopMillis = millis() - loopMillis;
if (loopMillis > 30) {
DEBUG_PRINTF_P(PSTR("Loop took %lums.\n"), loopMillis);
DEBUG_PRINTF_P(PSTR("Usermods took %lums.\n"), usermodMillis);
DEBUG_PRINTF_P(PSTR("Strip took %lums.\n"), stripMillis);
}
avgLoopMillis += loopMillis;
if (loopMillis > maxLoopMillis) maxLoopMillis = loopMillis;
if (millis() - debugTime > 29999) {
DEBUG_PRINTLN(F("---DEBUG INFO---"));
DEBUG_PRINT(F("Runtime: ")); DEBUG_PRINTLN(millis());
DEBUG_PRINT(F("Unix time: ")); toki.printTime(toki.getTime());
DEBUG_PRINT(F("Free heap: ")); DEBUG_PRINTLN(ESP.getFreeHeap());
#if defined(ARDUINO_ARCH_ESP32)
if (psramFound()) {
DEBUG_PRINT(F("Total PSRAM: ")); DEBUG_PRINT(ESP.getPsramSize()/1024); DEBUG_PRINTLN("kB");
DEBUG_PRINT(F("Free PSRAM: ")); DEBUG_PRINT(ESP.getFreePsram()/1024); DEBUG_PRINTLN("kB");
if (!psramSafe) DEBUG_PRINTLN(F("Not using PSRAM."));
}
#endif
DEBUG_PRINT(F("Wifi state: ")); DEBUG_PRINTLN(WiFi.status());
#ifndef WLED_DISABLE_ESPNOW
DEBUG_PRINT(F("ESP-NOW state: ")); DEBUG_PRINTLN(statusESPNow);
#endif
if (WiFi.status() != lastWifiState) {
wifiStateChangedTime = millis();
}
lastWifiState = WiFi.status();
DEBUG_PRINT(F("State time: ")); DEBUG_PRINTLN(wifiStateChangedTime);
DEBUG_PRINT(F("NTP last sync: ")); DEBUG_PRINTLN(ntpLastSyncTime);
DEBUG_PRINT(F("Client IP: ")); DEBUG_PRINTLN(Network.localIP());
if (loops > 0) { // avoid division by zero
DEBUG_PRINT(F("Loops/sec: ")); DEBUG_PRINTLN(loops / 30);
DEBUG_PRINT(F("Loop time[ms]: ")); DEBUG_PRINT(avgLoopMillis/loops); DEBUG_PRINT("/");DEBUG_PRINTLN(maxLoopMillis);
DEBUG_PRINT(F("UM time[ms]: ")); DEBUG_PRINT(avgUsermodMillis/loops); DEBUG_PRINT("/");DEBUG_PRINTLN(maxUsermodMillis);
DEBUG_PRINT(F("Strip time[ms]: ")); DEBUG_PRINT(avgStripMillis/loops); DEBUG_PRINT("/"); DEBUG_PRINTLN(maxStripMillis);
}
strip.printSize();
loops = 0;
maxLoopMillis = 0;
maxUsermodMillis = 0;
maxStripMillis = 0;
avgLoopMillis = 0;
avgUsermodMillis = 0;
avgStripMillis = 0;
debugTime = millis();
}
loops++;
lastRun = millis();
#endif // WLED_DEBUG
}
#if WLED_WATCHDOG_TIMEOUT > 0
void WLED::enableWatchdog() {
#ifdef ARDUINO_ARCH_ESP32
esp_err_t watchdog = esp_task_wdt_init(WLED_WATCHDOG_TIMEOUT, true);
DEBUG_PRINT(F("Watchdog enabled: "));
if (watchdog == ESP_OK) {
DEBUG_PRINTLN(F("OK"));
} else {
DEBUG_PRINTLN(watchdog);
return;
}
esp_task_wdt_add(NULL);
#else
ESP.wdtEnable(WLED_WATCHDOG_TIMEOUT * 1000);
#endif
}
void WLED::disableWatchdog() {
DEBUG_PRINTLN(F("Watchdog: disabled"));
#ifdef ARDUINO_ARCH_ESP32
esp_task_wdt_delete(NULL);
#else
ESP.wdtDisable();
#endif
}
#endif
void WLED::setup()
{
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET)
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); //disable brownout detection
#endif
#ifdef ARDUINO_ARCH_ESP32
pinMode(hardwareRX, INPUT_PULLDOWN); delay(1); // suppress noise in case RX pin is floating (at low noise energy) - see issue #3128
#endif
Serial.begin(115200);
#if !ARDUINO_USB_CDC_ON_BOOT
Serial.setTimeout(50); // this causes troubles on new MCUs that have a "virtual" USB Serial (HWCDC)
#else
#endif
#if defined(WLED_DEBUG) && defined(ARDUINO_ARCH_ESP32) && (defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32C3) || ARDUINO_USB_CDC_ON_BOOT)
delay(2500); // allow CDC USB serial to initialise
#endif
#if !defined(WLED_DEBUG) && defined(ARDUINO_ARCH_ESP32) && !defined(WLED_DEBUG_HOST) && ARDUINO_USB_CDC_ON_BOOT
Serial.setDebugOutput(false); // switch off kernel messages when using USBCDC
#endif
DEBUG_PRINTLN();
DEBUG_PRINT(F("---WLED "));
DEBUG_PRINT(versionString);
DEBUG_PRINT(F(" "));
DEBUG_PRINT(VERSION);
DEBUG_PRINTLN(F(" INIT---"));
#ifdef ARDUINO_ARCH_ESP32
DEBUG_PRINT(F("esp32 "));
DEBUG_PRINTLN(ESP.getSdkVersion());
#if defined(ESP_ARDUINO_VERSION)
//DEBUG_PRINTF_P(PSTR("arduino-esp32 0x%06x\n"), ESP_ARDUINO_VERSION);
DEBUG_PRINTF_P(PSTR("arduino-esp32 v%d.%d.%d\n"), int(ESP_ARDUINO_VERSION_MAJOR), int(ESP_ARDUINO_VERSION_MINOR), int(ESP_ARDUINO_VERSION_PATCH)); // availeable since v2.0.0
#else
DEBUG_PRINTLN(F("arduino-esp32 v1.0.x\n")); // we can't say in more detail.
#endif
DEBUG_PRINT(F("CPU: ")); DEBUG_PRINT(ESP.getChipModel());
DEBUG_PRINT(F(" rev.")); DEBUG_PRINT(ESP.getChipRevision());
DEBUG_PRINT(F(", ")); DEBUG_PRINT(ESP.getChipCores()); DEBUG_PRINT(F(" core(s)"));
DEBUG_PRINT(F(", ")); DEBUG_PRINT(ESP.getCpuFreqMHz()); DEBUG_PRINTLN(F("MHz."));
DEBUG_PRINT(F("FLASH: ")); DEBUG_PRINT((ESP.getFlashChipSize()/1024)/1024);
DEBUG_PRINT(F("MB, Mode ")); DEBUG_PRINT(ESP.getFlashChipMode());
#ifdef WLED_DEBUG
switch (ESP.getFlashChipMode()) {
// missing: Octal modes
case FM_QIO: DEBUG_PRINT(F(" (QIO)")); break;
case FM_QOUT: DEBUG_PRINT(F(" (QOUT)"));break;
case FM_DIO: DEBUG_PRINT(F(" (DIO)")); break;
case FM_DOUT: DEBUG_PRINT(F(" (DOUT)"));break;
default: break;
}
#endif
DEBUG_PRINT(F(", speed ")); DEBUG_PRINT(ESP.getFlashChipSpeed()/1000000);DEBUG_PRINTLN(F("MHz."));
#else
DEBUG_PRINT(F("esp8266 @ ")); DEBUG_PRINT(ESP.getCpuFreqMHz()); DEBUG_PRINT(F("MHz.\nCore: "));
DEBUG_PRINTLN(ESP.getCoreVersion());
DEBUG_PRINT(F("FLASH: ")); DEBUG_PRINT((ESP.getFlashChipSize()/1024)/1024); DEBUG_PRINTLN(F(" MB"));
#endif
DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap());
#if defined(ARDUINO_ARCH_ESP32)
// BOARD_HAS_PSRAM also means that a compiler flag "-mfix-esp32-psram-cache-issue" was used and so PSRAM is safe to use on rev.1 ESP32
#if !defined(BOARD_HAS_PSRAM) && !(defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3) || defined(CONFIG_IDF_TARGET_ESP32C3))
if (psramFound() && ESP.getChipRevision() < 3) psramSafe = false;
if (!psramSafe) DEBUG_PRINTLN(F("Not using PSRAM."));
#endif
pDoc = new PSRAMDynamicJsonDocument((psramSafe && psramFound() ? 2 : 1)*JSON_BUFFER_SIZE);
DEBUG_PRINT(F("JSON buffer allocated: ")); DEBUG_PRINTLN((psramSafe && psramFound() ? 2 : 1)*JSON_BUFFER_SIZE);
// if the above fails requestJsonBufferLock() will always return false preventing crashes
if (psramFound()) {
DEBUG_PRINT(F("Total PSRAM: ")); DEBUG_PRINT(ESP.getPsramSize()/1024); DEBUG_PRINTLN("kB");
DEBUG_PRINT(F("Free PSRAM : ")); DEBUG_PRINT(ESP.getFreePsram()/1024); DEBUG_PRINTLN("kB");
}
#endif
#if defined(WLED_DEBUG) && !defined(WLED_DEBUG_HOST)
pinManager.allocatePin(hardwareTX, true, PinOwner::DebugOut); // TX (GPIO1 on ESP32) reserved for debug output
#endif
#ifdef WLED_ENABLE_DMX //reserve GPIO2 as hardcoded DMX pin
pinManager.allocatePin(2, true, PinOwner::DMX);
#endif
DEBUG_PRINTLN(F("Registering usermods ..."));
registerUsermods();
DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap());
bool fsinit = false;
DEBUGFS_PRINTLN(F("Mount FS"));
#ifdef ARDUINO_ARCH_ESP32
fsinit = WLED_FS.begin(true);
#else
fsinit = WLED_FS.begin();
#endif
if (!fsinit) {
DEBUGFS_PRINTLN(F("FS failed!"));
errorFlag = ERR_FS_BEGIN;
}
#ifdef WLED_ADD_EEPROM_SUPPORT
else deEEP();
#else
initPresetsFile();
#endif
updateFSInfo();
// generate module IDs must be done before AP setup
escapedMac = WiFi.macAddress();
escapedMac.replace(":", "");
escapedMac.toLowerCase();
WLED_SET_AP_SSID(); // otherwise it is empty on first boot until config is saved
multiWiFi.push_back(WiFiConfig(CLIENT_SSID,CLIENT_PASS)); // initialise vector with default WiFi
DEBUG_PRINTLN(F("Reading config"));
deserializeConfigFromFS();
DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap());
#if defined(STATUSLED) && STATUSLED>=0
if (!pinManager.isPinAllocated(STATUSLED)) {
// NOTE: Special case: The status LED should *NOT* be allocated.
// See comments in handleStatusLed().
pinMode(STATUSLED, OUTPUT);
}
#endif
DEBUG_PRINTLN(F("Initializing strip"));
beginStrip();
DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap());
DEBUG_PRINTLN(F("Usermods setup"));
userSetup();
usermods.setup();
DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap());
if (strcmp(multiWiFi[0].clientSSID, DEFAULT_CLIENT_SSID) == 0)
showWelcomePage = true;
WiFi.persistent(false);
#ifdef WLED_USE_ETHERNET
WiFi.onEvent(WiFiEvent);
#endif
WiFi.mode(WIFI_STA); // enable scanning
findWiFi(true); // start scanning for available WiFi-s
#ifdef WLED_ENABLE_ADALIGHT
//Serial RX (Adalight, Improv, Serial JSON) only possible if GPIO3 unused
//Serial TX (Debug, Improv, Serial JSON) only possible if GPIO1 unused
if (!pinManager.isPinAllocated(hardwareRX) && !pinManager.isPinAllocated(hardwareTX)) {
Serial.println(F("Ada"));
}
#endif
// fill in unique mdns default
if (strcmp(cmDNS, "x") == 0) sprintf_P(cmDNS, PSTR("wled-%*s"), 6, escapedMac.c_str() + 6);
#ifndef WLED_DISABLE_MQTT
if (mqttDeviceTopic[0] == 0) sprintf_P(mqttDeviceTopic, PSTR("wled/%*s"), 6, escapedMac.c_str() + 6);
if (mqttClientID[0] == 0) sprintf_P(mqttClientID, PSTR("WLED-%*s"), 6, escapedMac.c_str() + 6);
#endif
#ifdef WLED_ENABLE_ADALIGHT
if (Serial.available() > 0 && Serial.peek() == 'I') handleImprovPacket();
#endif
#ifndef WLED_DISABLE_OTA
if (aOtaEnabled) {
ArduinoOTA.onStart([]() {
#ifdef ESP8266
wifi_set_sleep_type(NONE_SLEEP_T);
#endif
#if WLED_WATCHDOG_TIMEOUT > 0
WLED::instance().disableWatchdog();
#endif
DEBUG_PRINTLN(F("Start ArduinoOTA"));
});
ArduinoOTA.onError([](ota_error_t error) {
#if WLED_WATCHDOG_TIMEOUT > 0
// reenable watchdog on failed update
WLED::instance().enableWatchdog();
#endif
});
if (strlen(cmDNS) > 0)
ArduinoOTA.setHostname(cmDNS);
}
#endif
#ifdef WLED_ENABLE_DMX
initDMX();
#endif
#ifdef WLED_ENABLE_ADALIGHT
if (Serial.available() > 0 && Serial.peek() == 'I') handleImprovPacket();
#endif
// HTTP server page init
DEBUG_PRINTLN(F("initServer"));
initServer();
DEBUG_PRINT(F("heap ")); DEBUG_PRINTLN(ESP.getFreeHeap());
// Seed FastLED random functions with an esp random value, which already works properly at this point.
#if defined(ARDUINO_ARCH_ESP32)
const uint32_t seed32 = esp_random();
#elif defined(ARDUINO_ARCH_ESP8266)
const uint32_t seed32 = RANDOM_REG32;
#else
const uint32_t seed32 = random(std::numeric_limits<long>::max());
#endif
random16_set_seed((uint16_t)((seed32 & 0xFFFF) ^ (seed32 >> 16)));
#if WLED_WATCHDOG_TIMEOUT > 0
enableWatchdog();
#endif
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_DISABLE_BROWNOUT_DET)
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 1); //enable brownout detector
#endif
}
void WLED::beginStrip()
{
// Initialize NeoPixel Strip and button
strip.finalizeInit(); // busses created during deserializeConfig() if config existed
strip.makeAutoSegments();
strip.setBrightness(0);
strip.setShowCallback(handleOverlayDraw);
if (turnOnAtBoot) {
if (briS > 0) bri = briS;
else if (bri == 0) bri = 128;
} else {
// fix for #3196
if (bootPreset > 0) {
bool oldTransition = fadeTransition; // workaround if transitions are enabled
fadeTransition = false; // ignore transitions temporarily
strip.setColor(0, BLACK); // set all segments black
fadeTransition = oldTransition; // restore transitions
col[0] = col[1] = col[2] = col[3] = 0; // needed for colorUpdated()
}
briLast = briS; bri = 0;
strip.fill(BLACK);
strip.show();
}
if (bootPreset > 0) {
applyPreset(bootPreset, CALL_MODE_INIT);
}
colorUpdated(CALL_MODE_INIT);
// init relay pin
if (rlyPin>=0)
digitalWrite(rlyPin, (rlyMde ? bri : !bri));
}
void WLED::initAP(bool resetAP)
{
if (apBehavior == AP_BEHAVIOR_BUTTON_ONLY && !resetAP)
return;
if (resetAP) {
WLED_SET_AP_SSID();
strcpy_P(apPass, PSTR(WLED_AP_PASS));
}
DEBUG_PRINT(F("Opening access point "));
DEBUG_PRINTLN(apSSID);
WiFi.softAPConfig(IPAddress(4, 3, 2, 1), IPAddress(4, 3, 2, 1), IPAddress(255, 255, 255, 0));
WiFi.softAP(apSSID, apPass, apChannel, apHide);
#if defined(LOLIN_WIFI_FIX) && (defined(ARDUINO_ARCH_ESP32C3) || defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32S3))
WiFi.setTxPower(WIFI_POWER_8_5dBm);
#endif
if (!apActive) // start captive portal if AP active
{
DEBUG_PRINTLN(F("Init AP interfaces"));
server.begin();
if (udpPort > 0 && udpPort != ntpLocalPort) {
udpConnected = notifierUdp.begin(udpPort);
}
if (udpRgbPort > 0 && udpRgbPort != ntpLocalPort && udpRgbPort != udpPort) {
udpRgbConnected = rgbUdp.begin(udpRgbPort);
}
if (udpPort2 > 0 && udpPort2 != ntpLocalPort && udpPort2 != udpPort && udpPort2 != udpRgbPort) {
udp2Connected = notifier2Udp.begin(udpPort2);
}
e131.begin(false, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT);
ddp.begin(false, DDP_DEFAULT_PORT);
dnsServer.setErrorReplyCode(DNSReplyCode::NoError);
dnsServer.start(53, "*", WiFi.softAPIP());
}
apActive = true;
}
bool WLED::initEthernet()
{
#if defined(ARDUINO_ARCH_ESP32) && defined(WLED_USE_ETHERNET)
static bool successfullyConfiguredEthernet = false;
if (successfullyConfiguredEthernet) {
// DEBUG_PRINTLN(F("initE: ETH already successfully configured, ignoring"));
return false;
}
if (ethernetType == WLED_ETH_NONE) {
return false;
}
if (ethernetType >= WLED_NUM_ETH_TYPES) {
DEBUG_PRINT(F("initE: Ignoring attempt for invalid ethernetType ")); DEBUG_PRINTLN(ethernetType);
return false;
}
DEBUG_PRINT(F("initE: Attempting ETH config: ")); DEBUG_PRINTLN(ethernetType);
// Ethernet initialization should only succeed once -- else reboot required
ethernet_settings es = ethernetBoards[ethernetType];
managed_pin_type pinsToAllocate[10] = {
// first six pins are non-configurable
esp32_nonconfigurable_ethernet_pins[0],
esp32_nonconfigurable_ethernet_pins[1],
esp32_nonconfigurable_ethernet_pins[2],
esp32_nonconfigurable_ethernet_pins[3],
esp32_nonconfigurable_ethernet_pins[4],
esp32_nonconfigurable_ethernet_pins[5],
{ (int8_t)es.eth_mdc, true }, // [6] = MDC is output and mandatory
{ (int8_t)es.eth_mdio, true }, // [7] = MDIO is bidirectional and mandatory
{ (int8_t)es.eth_power, true }, // [8] = optional pin, not all boards use
{ ((int8_t)0xFE), false }, // [9] = replaced with eth_clk_mode, mandatory
};
// update the clock pin....
if (es.eth_clk_mode == ETH_CLOCK_GPIO0_IN) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = false;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO0_OUT) {
pinsToAllocate[9].pin = 0;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO16_OUT) {
pinsToAllocate[9].pin = 16;
pinsToAllocate[9].isOutput = true;
} else if (es.eth_clk_mode == ETH_CLOCK_GPIO17_OUT) {
pinsToAllocate[9].pin = 17;
pinsToAllocate[9].isOutput = true;
} else {
DEBUG_PRINT(F("initE: Failing due to invalid eth_clk_mode ("));
DEBUG_PRINT(es.eth_clk_mode);
DEBUG_PRINTLN(")");
return false;
}
if (!pinManager.allocateMultiplePins(pinsToAllocate, 10, PinOwner::Ethernet)) {
DEBUG_PRINTLN(F("initE: Failed to allocate ethernet pins"));
return false;
}
/*
For LAN8720 the most correct way is to perform clean reset each time before init
applying LOW to power or nRST pin for at least 100 us (please refer to datasheet, page 59)
ESP_IDF > V4 implements it (150 us, lan87xx_reset_hw(esp_eth_phy_t *phy) function in
/components/esp_eth/src/esp_eth_phy_lan87xx.c, line 280)
but ESP_IDF < V4 does not. Lets do it:
[not always needed, might be relevant in some EMI situations at startup and for hot resets]
*/
#if ESP_IDF_VERSION_MAJOR==3
if(es.eth_power>0 && es.eth_type==ETH_PHY_LAN8720) {
pinMode(es.eth_power, OUTPUT);
digitalWrite(es.eth_power, 0);
delayMicroseconds(150);
digitalWrite(es.eth_power, 1);
delayMicroseconds(10);
}
#endif
if (!ETH.begin(
(uint8_t) es.eth_address,
(int) es.eth_power,
(int) es.eth_mdc,
(int) es.eth_mdio,
(eth_phy_type_t) es.eth_type,
(eth_clock_mode_t) es.eth_clk_mode
)) {
DEBUG_PRINTLN(F("initC: ETH.begin() failed"));
// de-allocate the allocated pins
for (managed_pin_type mpt : pinsToAllocate) {
pinManager.deallocatePin(mpt.pin, PinOwner::Ethernet);
}
return false;
}
successfullyConfiguredEthernet = true;
DEBUG_PRINTLN(F("initC: *** Ethernet successfully configured! ***"));
return true;
#else
return false; // Ethernet not enabled for build
#endif
}
// performs asynchronous scan for available networks (which may take couple of seconds to finish)
// returns configured WiFi ID with the strongest signal (or default if no configured networks available)
int8_t WLED::findWiFi(bool doScan) {
if (multiWiFi.size() <= 1) {
DEBUG_PRINTLN(F("Defaulf WiFi used."));
return 0;
}
if (doScan) WiFi.scanDelete(); // restart scan
int status = WiFi.scanComplete(); // complete scan may take as much as several seconds (usually <3s with not very crowded air)
if (status == WIFI_SCAN_FAILED) {
DEBUG_PRINTLN(F("WiFi scan started."));
WiFi.scanNetworks(true); // start scanning in asynchronous mode
} else if (status >= 0) { // status contains number of found networks
DEBUG_PRINT(F("WiFi scan completed: ")); DEBUG_PRINTLN(status);
int rssi = -9999;
unsigned selected = selectedWiFi;
for (int o = 0; o < status; o++) {
DEBUG_PRINT(F(" WiFi available: ")); DEBUG_PRINT(WiFi.SSID(o));
DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(WiFi.RSSI(o)); DEBUG_PRINTLN(F("dB"));
for (unsigned n = 0; n < multiWiFi.size(); n++)
if (!strcmp(WiFi.SSID(o).c_str(), multiWiFi[n].clientSSID)) {
// find the WiFi with the strongest signal (but keep priority of entry if signal difference is not big)
if ((n < selected && WiFi.RSSI(o) > rssi-10) || WiFi.RSSI(o) > rssi) {
rssi = WiFi.RSSI(o);
selected = n;
}
break;
}
}
DEBUG_PRINT(F("Selected: ")); DEBUG_PRINT(multiWiFi[selected].clientSSID);
DEBUG_PRINT(F(" RSSI: ")); DEBUG_PRINT(rssi); DEBUG_PRINTLN(F("dB"));
return selected;
}
//DEBUG_PRINT(F("WiFi scan running."));
return status; // scan is still running or there was an error
}
void WLED::initConnection()
{
DEBUG_PRINTLN(F("initConnection() called."));
#ifdef WLED_ENABLE_WEBSOCKETS
ws.onEvent(wsEvent);
#endif
#ifndef WLED_DISABLE_ESPNOW
if (statusESPNow == ESP_NOW_STATE_ON) {
DEBUG_PRINTLN(F("ESP-NOW stopping."));
quickEspNow.stop();
statusESPNow = ESP_NOW_STATE_UNINIT;
}
#endif
WiFi.disconnect(true); // close old connections
#ifdef ESP8266
WiFi.setPhyMode(force802_3g ? WIFI_PHY_MODE_11G : WIFI_PHY_MODE_11N);
#endif
if (multiWiFi[selectedWiFi].staticIP != 0U && multiWiFi[selectedWiFi].staticGW != 0U) {
WiFi.config(multiWiFi[selectedWiFi].staticIP, multiWiFi[selectedWiFi].staticGW, multiWiFi[selectedWiFi].staticSN, dnsAddress);
} else {
WiFi.config(IPAddress((uint32_t)0), IPAddress((uint32_t)0), IPAddress((uint32_t)0));
}
lastReconnectAttempt = millis();
if (!WLED_WIFI_CONFIGURED) {
DEBUG_PRINTLN(F("No connection configured."));
if (!apActive) initAP(); // instantly go to ap mode
} else if (!apActive) {
if (apBehavior == AP_BEHAVIOR_ALWAYS) {
DEBUG_PRINTLN(F("Access point ALWAYS enabled."));
initAP();
} else {
DEBUG_PRINTLN(F("Access point disabled (init)."));
WiFi.softAPdisconnect(true);
WiFi.mode(WIFI_STA);
}
}
if (WLED_WIFI_CONFIGURED) {
showWelcomePage = false;
DEBUG_PRINT(F("Connecting to "));
DEBUG_PRINT(multiWiFi[selectedWiFi].clientSSID);
DEBUG_PRINTLN(F("..."));
// convert the "serverDescription" into a valid DNS hostname (alphanumeric)
char hostname[25];
prepareHostname(hostname);
WiFi.begin(multiWiFi[selectedWiFi].clientSSID, multiWiFi[selectedWiFi].clientPass); // no harm if called multiple times
#ifdef ARDUINO_ARCH_ESP32
#if defined(LOLIN_WIFI_FIX) && (defined(ARDUINO_ARCH_ESP32C3) || defined(ARDUINO_ARCH_ESP32S2) || defined(ARDUINO_ARCH_ESP32S3))
WiFi.setTxPower(WIFI_POWER_8_5dBm);
#endif
WiFi.setSleep(!noWifiSleep);
WiFi.setHostname(hostname);
#else
wifi_set_sleep_type((noWifiSleep) ? NONE_SLEEP_T : MODEM_SLEEP_T);
WiFi.hostname(hostname);
#endif
}
#ifndef WLED_DISABLE_ESPNOW
if (enableESPNow) {
quickEspNow.onDataSent(espNowSentCB); // see udp.cpp
quickEspNow.onDataRcvd(espNowReceiveCB); // see udp.cpp
bool espNowOK;
if (apActive) {
DEBUG_PRINTLN(F("ESP-NOW initing in AP mode."));
#ifdef ESP32
quickEspNow.setWiFiBandwidth(WIFI_IF_AP, WIFI_BW_HT20); // Only needed for ESP32 in case you need coexistence with ESP8266 in the same network
#endif //ESP32
espNowOK = quickEspNow.begin(apChannel, WIFI_IF_AP); // Same channel must be used for both AP and ESP-NOW
} else {
DEBUG_PRINTLN(F("ESP-NOW initing in STA mode."));
espNowOK = quickEspNow.begin(); // Use no parameters to start ESP-NOW on same channel as WiFi, in STA mode
}
statusESPNow = espNowOK ? ESP_NOW_STATE_ON : ESP_NOW_STATE_ERROR;
}
#endif
}
void WLED::initInterfaces()
{
DEBUG_PRINTLN(F("Init STA interfaces"));
#ifndef WLED_DISABLE_HUESYNC
IPAddress ipAddress = Network.localIP();
if (hueIP[0] == 0) {
hueIP[0] = ipAddress[0];
hueIP[1] = ipAddress[1];
hueIP[2] = ipAddress[2];
}
#endif
#ifndef WLED_DISABLE_ALEXA
// init Alexa hue emulation
if (alexaEnabled)
alexaInit();
#endif
#ifndef WLED_DISABLE_OTA
if (aOtaEnabled)
ArduinoOTA.begin();
#endif
// Set up mDNS responder:
if (strlen(cmDNS) > 0) {
// "end" must be called before "begin" is called a 2nd time
// see https://github.com/esp8266/Arduino/issues/7213
MDNS.end();
MDNS.begin(cmDNS);
DEBUG_PRINTLN(F("mDNS started"));
MDNS.addService("http", "tcp", 80);
MDNS.addService("wled", "tcp", 80);
MDNS.addServiceTxt("wled", "tcp", "mac", escapedMac.c_str());
}
server.begin();
if (udpPort > 0 && udpPort != ntpLocalPort) {
udpConnected = notifierUdp.begin(udpPort);
if (udpConnected && udpRgbPort != udpPort)
udpRgbConnected = rgbUdp.begin(udpRgbPort);
if (udpConnected && udpPort2 != udpPort && udpPort2 != udpRgbPort)
udp2Connected = notifier2Udp.begin(udpPort2);
}
if (ntpEnabled)
ntpConnected = ntpUdp.begin(ntpLocalPort);
e131.begin(e131Multicast, e131Port, e131Universe, E131_MAX_UNIVERSE_COUNT);
ddp.begin(false, DDP_DEFAULT_PORT);
reconnectHue();
#ifndef WLED_DISABLE_MQTT
initMqtt();
#endif
interfacesInited = true;
wasConnected = true;
}
void WLED::handleConnection()
{
static bool scanDone = true;
static byte stacO = 0;
unsigned long now = millis();
const bool wifiConfigured = WLED_WIFI_CONFIGURED;
// ignore connection handling if WiFi is configured and scan still running
// or within first 2s if WiFi is not configured or AP is always active
if ((wifiConfigured && multiWiFi.size() > 1 && WiFi.scanComplete() < 0) || (now < 2000 && (!wifiConfigured || apBehavior == AP_BEHAVIOR_ALWAYS)))
return;
if (lastReconnectAttempt == 0 || forceReconnect) {
DEBUG_PRINTLN(F("Initial connect or forced reconnect."));
selectedWiFi = findWiFi(); // find strongest WiFi
initConnection();
interfacesInited = false;
forceReconnect = false;
wasConnected = false;
return;
}
byte stac = 0;
if (apActive) {
#ifdef ESP8266
stac = wifi_softap_get_station_num();
#else
wifi_sta_list_t stationList;
esp_wifi_ap_get_sta_list(&stationList);
stac = stationList.num;
#endif
if (stac != stacO) {
stacO = stac;
DEBUG_PRINT(F("Connected AP clients: "));
DEBUG_PRINTLN(stac);
if (!WLED_CONNECTED && wifiConfigured) { // trying to connect, but not connected
if (stac)
WiFi.disconnect(); // disable search so that AP can work
else
initConnection(); // restart search
}
}
}
if (!Network.isConnected()) {
if (interfacesInited) {
if (scanDone && multiWiFi.size() > 1) {
DEBUG_PRINTLN(F("WiFi scan initiated on disconnect."));
findWiFi(true); // reinit scan
scanDone = false;
return; // try to connect in next iteration
}
DEBUG_PRINTLN(F("Disconnected!"));
selectedWiFi = findWiFi();
initConnection();
interfacesInited = false;
scanDone = true;
}
//send improv failed 6 seconds after second init attempt (24 sec. after provisioning)
if (improvActive > 2 && now - lastReconnectAttempt > 6000) {
sendImprovStateResponse(0x03, true);
improvActive = 2;
}
if (now - lastReconnectAttempt > ((stac) ? 300000 : 18000) && wifiConfigured) {
if (improvActive == 2) improvActive = 3;
DEBUG_PRINTLN(F("Last reconnect too old."));
if (++selectedWiFi >= multiWiFi.size()) selectedWiFi = 0; // we couldn't connect, try with another network from the list
initConnection();
}
if (!apActive && now - lastReconnectAttempt > 12000 && (!wasConnected || apBehavior == AP_BEHAVIOR_NO_CONN)) {
if (!(apBehavior == AP_BEHAVIOR_TEMPORARY && now > WLED_AP_TIMEOUT)) {
DEBUG_PRINTLN(F("Not connected AP."));
initAP(); // start AP only within first 5min
}
}
if (apActive && apBehavior == AP_BEHAVIOR_TEMPORARY && now > WLED_AP_TIMEOUT && stac == 0) { // disconnect AP after 5min if no clients connected
// if AP was enabled more than 10min after boot or if client was connected more than 10min after boot do not disconnect AP mode
if (now < 2*WLED_AP_TIMEOUT) {
dnsServer.stop();
WiFi.softAPdisconnect(true);
apActive = false;
DEBUG_PRINTLN(F("Temporary AP disabled."));
}
}
} else if (!interfacesInited) { //newly connected
DEBUG_PRINTLN();
DEBUG_PRINT(F("Connected! IP address: "));
DEBUG_PRINTLN(Network.localIP());
if (improvActive) {
if (improvError == 3) sendImprovStateResponse(0x00, true);
sendImprovStateResponse(0x04);
if (improvActive > 1) sendImprovIPRPCResult(ImprovRPCType::Command_Wifi);
}
initInterfaces();
userConnected();
usermods.connected();
lastMqttReconnectAttempt = 0; // force immediate update
// shut down AP
if (apBehavior != AP_BEHAVIOR_ALWAYS && apActive) {
dnsServer.stop();
WiFi.softAPdisconnect(true);
apActive = false;
DEBUG_PRINTLN(F("Access point disabled (connected)."));
}
}
}
// If status LED pin is allocated for other uses, does nothing
// else blink at 1Hz when WLED_CONNECTED is false (no WiFi, ?? no Ethernet ??)
// else blink at 2Hz when MQTT is enabled but not connected
// else turn the status LED off
#if defined(STATUSLED)
void WLED::handleStatusLED()
{
uint32_t c = 0;
#if STATUSLED>=0
if (pinManager.isPinAllocated(STATUSLED)) {
return; //lower priority if something else uses the same pin
}
#endif
if (WLED_CONNECTED) {
c = RGBW32(0,255,0,0);
ledStatusType = 2;
} else if (WLED_MQTT_CONNECTED) {
c = RGBW32(0,128,0,0);
ledStatusType = 4;
} else if (apActive) {
c = RGBW32(0,0,255,0);
ledStatusType = 1;
}
if (ledStatusType) {
if (millis() - ledStatusLastMillis >= (1000/ledStatusType)) {
ledStatusLastMillis = millis();
ledStatusState = !ledStatusState;
#if STATUSLED>=0
digitalWrite(STATUSLED, ledStatusState);
#else
BusManager::setStatusPixel(ledStatusState ? c : 0);
#endif
}
} else {
#if STATUSLED>=0
#ifdef STATUSLEDINVERTED
digitalWrite(STATUSLED, HIGH);
#else
digitalWrite(STATUSLED, LOW);
#endif
#else
BusManager::setStatusPixel(0);
#endif
}
}
#endif