WLED/wled00/pin_manager.cpp

328 wiersze
12 KiB
C++

#include "pin_manager.h"
#include "wled.h"
#ifdef WLED_DEBUG
static void DebugPrintOwnerTag(PinOwner tag)
{
uint32_t q = static_cast<uint8_t>(tag);
if (q) {
DEBUG_PRINTF_P(PSTR("0x%02x (%d)"), q, q);
} else {
DEBUG_PRINT(F("(no owner)"));
}
}
#endif
/// Actual allocation/deallocation routines
bool PinManagerClass::deallocatePin(byte gpio, PinOwner tag)
{
if (gpio == 0xFF) return true; // explicitly allow clients to free -1 as a no-op
if (!isPinOk(gpio, false)) return false; // but return false for any other invalid pin
// if a non-zero ownerTag, only allow de-allocation if the owner's tag is provided
if ((ownerTag[gpio] != PinOwner::None) && (ownerTag[gpio] != tag)) {
#ifdef WLED_DEBUG
DEBUG_PRINT(F("PIN DEALLOC: IO "));
DEBUG_PRINT(gpio);
DEBUG_PRINT(F(" allocated by "));
DebugPrintOwnerTag(ownerTag[gpio]);
DEBUG_PRINT(F(", but attempted de-allocation by "));
DebugPrintOwnerTag(tag);
#endif
return false;
}
byte by = gpio >> 3;
byte bi = gpio - 8*by;
bitWrite(pinAlloc[by], bi, false);
ownerTag[gpio] = PinOwner::None;
return true;
}
// support function for deallocating multiple pins
bool PinManagerClass::deallocateMultiplePins(const uint8_t *pinArray, byte arrayElementCount, PinOwner tag)
{
bool shouldFail = false;
DEBUG_PRINTLN(F("MULTIPIN DEALLOC"));
// first verify the pins are OK and allocated by selected owner
for (int i = 0; i < arrayElementCount; i++) {
byte gpio = pinArray[i];
if (gpio == 0xFF) {
// explicit support for io -1 as a no-op (no allocation of pin),
// as this can greatly simplify configuration arrays
continue;
}
if (isPinAllocated(gpio, tag)) {
// if the current pin is allocated by selected owner it is possible to release it
continue;
}
#ifdef WLED_DEBUG
DEBUG_PRINT(F("PIN DEALLOC: IO "));
DEBUG_PRINT(gpio);
DEBUG_PRINT(F(" allocated by "));
DebugPrintOwnerTag(ownerTag[gpio]);
DEBUG_PRINT(F(", but attempted de-allocation by "));
DebugPrintOwnerTag(tag);
#endif
shouldFail = true;
}
if (shouldFail) {
return false; // no pins deallocated
}
if (tag==PinOwner::HW_I2C) {
if (i2cAllocCount && --i2cAllocCount>0) {
// no deallocation done until last owner releases pins
return true;
}
}
if (tag==PinOwner::HW_SPI) {
if (spiAllocCount && --spiAllocCount>0) {
// no deallocation done until last owner releases pins
return true;
}
}
for (int i = 0; i < arrayElementCount; i++) {
deallocatePin(pinArray[i], tag);
}
return true;
}
bool PinManagerClass::deallocateMultiplePins(const managed_pin_type * mptArray, byte arrayElementCount, PinOwner tag)
{
uint8_t pins[arrayElementCount];
for (int i=0; i<arrayElementCount; i++) pins[i] = mptArray[i].pin;
return deallocateMultiplePins(pins, arrayElementCount, tag);
}
bool PinManagerClass::allocateMultiplePins(const managed_pin_type * mptArray, byte arrayElementCount, PinOwner tag)
{
bool shouldFail = false;
// first verify the pins are OK and not already allocated
for (int i = 0; i < arrayElementCount; i++) {
byte gpio = mptArray[i].pin;
if (gpio == 0xFF) {
// explicit support for io -1 as a no-op (no allocation of pin),
// as this can greatly simplify configuration arrays
continue;
}
if (!isPinOk(gpio, mptArray[i].isOutput)) {
#ifdef WLED_DEBUG
DEBUG_PRINT(F("PIN ALLOC: Invalid pin attempted to be allocated: GPIO "));
DEBUG_PRINT(gpio);
DEBUG_PRINT(F(" as ")); DEBUG_PRINT(mptArray[i].isOutput ? F("output"): F("input"));
DEBUG_PRINTLN(F(""));
#endif
shouldFail = true;
}
if ((tag==PinOwner::HW_I2C || tag==PinOwner::HW_SPI) && isPinAllocated(gpio, tag)) {
// allow multiple "allocations" of HW I2C & SPI bus pins
continue;
} else if (isPinAllocated(gpio)) {
#ifdef WLED_DEBUG
DEBUG_PRINT(F("PIN ALLOC: FAIL: IO "));
DEBUG_PRINT(gpio);
DEBUG_PRINT(F(" already allocated by "));
DebugPrintOwnerTag(ownerTag[gpio]);
DEBUG_PRINTLN(F(""));
#endif
shouldFail = true;
}
}
if (shouldFail) {
return false;
}
if (tag==PinOwner::HW_I2C) i2cAllocCount++;
if (tag==PinOwner::HW_SPI) spiAllocCount++;
// all pins are available .. track each one
for (int i = 0; i < arrayElementCount; i++) {
byte gpio = mptArray[i].pin;
if (gpio == 0xFF) {
// allow callers to include -1 value as non-requested pin
// as this can greatly simplify configuration arrays
continue;
}
if (gpio >= WLED_NUM_PINS)
continue; // other unexpected GPIO => avoid array bounds violation
byte by = gpio >> 3;
byte bi = gpio - 8*by;
bitWrite(pinAlloc[by], bi, true);
ownerTag[gpio] = tag;
#ifdef WLED_DEBUG
DEBUG_PRINT(F("PIN ALLOC: Pin "));
DEBUG_PRINT(gpio);
DEBUG_PRINT(F(" allocated by "));
DebugPrintOwnerTag(tag);
DEBUG_PRINTLN(F(""));
#endif
}
return true;
}
bool PinManagerClass::allocatePin(byte gpio, bool output, PinOwner tag)
{
// HW I2C & SPI pins have to be allocated using allocateMultiplePins variant since there is always SCL/SDA pair
if (!isPinOk(gpio, output) || (gpio >= WLED_NUM_PINS) || tag==PinOwner::HW_I2C || tag==PinOwner::HW_SPI) {
#ifdef WLED_DEBUG
if (gpio < 255) { // 255 (-1) is the "not defined GPIO"
if (!isPinOk(gpio, output)) {
DEBUG_PRINT(F("PIN ALLOC: FAIL for owner "));
DebugPrintOwnerTag(tag);
DEBUG_PRINT(F(": GPIO ")); DEBUG_PRINT(gpio);
if (output) DEBUG_PRINTLN(F(" cannot be used for i/o on this MCU."));
else DEBUG_PRINTLN(F(" cannot be used as input on this MCU."));
} else {
DEBUG_PRINT(F("PIN ALLOC: FAIL: GPIO ")); DEBUG_PRINT(gpio);
DEBUG_PRINTLN(F(" - HW I2C & SPI pins have to be allocated using allocateMultiplePins()"));
}
}
#endif
return false;
}
if (isPinAllocated(gpio)) {
#ifdef WLED_DEBUG
DEBUG_PRINT(F("PIN ALLOC: Pin "));
DEBUG_PRINT(gpio);
DEBUG_PRINT(F(" already allocated by "));
DebugPrintOwnerTag(ownerTag[gpio]);
DEBUG_PRINTLN(F(""));
#endif
return false;
}
byte by = gpio >> 3;
byte bi = gpio - 8*by;
bitWrite(pinAlloc[by], bi, true);
ownerTag[gpio] = tag;
#ifdef WLED_DEBUG
DEBUG_PRINT(F("PIN ALLOC: Pin "));
DEBUG_PRINT(gpio);
DEBUG_PRINT(F(" successfully allocated by "));
DebugPrintOwnerTag(tag);
DEBUG_PRINTLN(F(""));
#endif
return true;
}
// if tag is set to PinOwner::None, checks for ANY owner of the pin.
// if tag is set to any other value, checks if that tag is the current owner of the pin.
bool PinManagerClass::isPinAllocated(byte gpio, PinOwner tag) const
{
if (!isPinOk(gpio, false)) return true;
if ((tag != PinOwner::None) && (ownerTag[gpio] != tag)) return false;
byte by = gpio >> 3;
byte bi = gpio - (by<<3);
return bitRead(pinAlloc[by], bi);
}
/* see https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-reference/peripherals/gpio.html
* The ESP32-S3 chip features 45 physical GPIO pins (GPIO0 ~ GPIO21 and GPIO26 ~ GPIO48). Each pin can be used as a general-purpose I/O
* Strapping pins: GPIO0, GPIO3, GPIO45 and GPIO46 are strapping pins. For more infomation, please refer to ESP32-S3 datasheet.
* Serial TX = GPIO43, RX = GPIO44; LED BUILTIN is usually GPIO39
* USB-JTAG: GPIO 19 and 20 are used by USB-JTAG by default. In order to use them as GPIOs, USB-JTAG will be disabled by the drivers.
* SPI0/1: GPIO26-32 are usually used for SPI flash and PSRAM and not recommended for other uses.
* When using Octal Flash or Octal PSRAM or both, GPIO33~37 are connected to SPIIO4 ~ SPIIO7 and SPIDQS. Therefore, on boards embedded with ESP32-S3R8 / ESP32-S3R8V chip, GPIO33~37 are also not recommended for other uses.
*
* see https://docs.espressif.com/projects/esp-idf/en/v4.4.2/esp32s3/api-reference/peripherals/adc.html
* https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/api-reference/peripherals/adc_oneshot.html
* ADC1: GPIO1 - GPIO10 (channel 0..9)
* ADC2: GPIO11 - GPIO20 (channel 0..9)
* adc_power_acquire(): Please do not use the interrupt of GPIO36 and GPIO39 when using ADC or Wi-Fi and Bluetooth with sleep mode enabled. As a workaround, call adc_power_acquire() in the APP.
* Since the ADC2 module is also used by the Wi-Fi, reading operation of adc2_get_raw() may fail between esp_wifi_start() and esp_wifi_stop(). Use the return code to see whether the reading is successful.
*/
// Check if supplied GPIO is ok to use
bool PinManagerClass::isPinOk(byte gpio, bool output) const
{
if (gpio >= WLED_NUM_PINS) return false; // catch error case, to avoid array out-of-bounds access
#ifdef ARDUINO_ARCH_ESP32
if (digitalPinIsValid(gpio)) {
#if defined(CONFIG_IDF_TARGET_ESP32C3)
// strapping pins: 2, 8, & 9
if (gpio > 11 && gpio < 18) return false; // 11-17 SPI FLASH
if (gpio > 17 && gpio < 20) return false; // 18-19 USB-JTAG
#elif defined(CONFIG_IDF_TARGET_ESP32S3)
// 00 to 18 are for general use. Be careful about straping pins GPIO0 and GPIO3 - these may be pulled-up or pulled-down on your board.
if (gpio > 18 && gpio < 21) return false; // 19 + 20 = USB-JTAG. Not recommended for other uses.
if (gpio > 21 && gpio < 33) return false; // 22 to 32: not connected + SPI FLASH
if (gpio > 32 && gpio < 38) return !psramFound(); // 33 to 37: not available if using _octal_ SPI Flash or _octal_ PSRAM
// 38 to 48 are for general use. Be careful about straping pins GPIO45 and GPIO46 - these may be pull-up or pulled-down on your board.
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
// strapping pins: 0, 45 & 46
if (gpio > 21 && gpio < 33) return false; // 22 to 32: not connected + SPI FLASH
// JTAG: GPIO39-42 are usually used for inline debugging
// GPIO46 is input only and pulled down
#else
if (gpio > 5 && gpio < 12) return false; //SPI flash pins
if (strncmp_P(PSTR("ESP32-PICO"), ESP.getChipModel(), 10) == 0 && (gpio == 16 || gpio == 17)) return false; // PICO-D4: gpio16+17 are in use for onboard SPI FLASH
if (gpio == 16 || gpio == 17) return !psramFound(); //PSRAM pins on ESP32 (these are IO)
#endif
if (output) return digitalPinCanOutput(gpio);
else return true;
}
#else
if (gpio < 6) return true;
if (gpio < 12) return false; //SPI flash pins
if (gpio < 17) return true;
#endif
return false;
}
PinOwner PinManagerClass::getPinOwner(byte gpio) const
{
if (!isPinOk(gpio, false)) return PinOwner::None;
return ownerTag[gpio];
}
#ifdef ARDUINO_ARCH_ESP32
#if defined(CONFIG_IDF_TARGET_ESP32C3)
#define MAX_LED_CHANNELS 6
#else
#if defined(CONFIG_IDF_TARGET_ESP32S2) || defined(CONFIG_IDF_TARGET_ESP32S3)
#define MAX_LED_CHANNELS 8
#else
#define MAX_LED_CHANNELS 16
#endif
#endif
byte PinManagerClass::allocateLedc(byte channels)
{
if (channels > MAX_LED_CHANNELS || channels == 0) return 255;
byte ca = 0;
for (byte i = 0; i < MAX_LED_CHANNELS; i++) {
byte by = i >> 3;
byte bi = i - 8*by;
if (bitRead(ledcAlloc[by], bi)) { //found occupied pin
ca = 0;
} else {
ca++;
}
if (ca >= channels) { //enough free channels
byte in = (i + 1) - ca;
for (byte j = 0; j < ca; j++) {
byte bChan = in + j;
byte byChan = bChan >> 3;
byte biChan = bChan - 8*byChan;
bitWrite(ledcAlloc[byChan], biChan, true);
}
return in;
}
}
return 255; //not enough consecutive free LEDC channels
}
void PinManagerClass::deallocateLedc(byte pos, byte channels)
{
for (byte j = pos; j < pos + channels; j++) {
if (j > MAX_LED_CHANNELS) return;
byte by = j >> 3;
byte bi = j - 8*by;
bitWrite(ledcAlloc[by], bi, false);
}
}
#endif
PinManagerClass pinManager = PinManagerClass();