kopia lustrzana https://github.com/Aircoookie/WLED
				
				
				
			
		
			
				
	
	
		
			547 wiersze
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
			
		
		
	
	
			547 wiersze
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
#include "wled.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Color conversion & utility methods
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * color blend function, based on FastLED blend function
 | 
						|
 * the calculation for each color is: result = (A*(amountOfA) + A + B*(amountOfB) + B) / 256 with amountOfA = 255 - amountOfB
 | 
						|
 */
 | 
						|
uint32_t color_blend(uint32_t color1, uint32_t color2, uint8_t blend) {
 | 
						|
  // min / max blend checking is omitted: calls with 0 or 255 are rare, checking lowers overall performance
 | 
						|
  uint32_t rb1 = color1 & 0x00FF00FF;
 | 
						|
  uint32_t wg1 = (color1>>8) & 0x00FF00FF;
 | 
						|
  uint32_t rb2 = color2 & 0x00FF00FF;
 | 
						|
  uint32_t wg2 = (color2>>8) & 0x00FF00FF;
 | 
						|
  uint32_t rb3 = ((((rb1 << 8) | rb2) + (rb2 * blend) - (rb1 * blend)) >> 8) & 0x00FF00FF;
 | 
						|
  uint32_t wg3 = ((((wg1 << 8) | wg2) + (wg2 * blend) - (wg1 * blend))) & 0xFF00FF00;
 | 
						|
  return rb3 | wg3;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * color add function that preserves ratio
 | 
						|
 * original idea: https://github.com/Aircoookie/WLED/pull/2465 by https://github.com/Proto-molecule
 | 
						|
 * speed optimisations by @dedehai
 | 
						|
 */
 | 
						|
uint32_t color_add(uint32_t c1, uint32_t c2, bool preserveCR)
 | 
						|
{
 | 
						|
  if (c1 == BLACK) return c2;
 | 
						|
  if (c2 == BLACK) return c1;
 | 
						|
  uint32_t rb = (c1 & 0x00FF00FF) + (c2 & 0x00FF00FF); // mask and add two colors at once
 | 
						|
  uint32_t wg = ((c1>>8) & 0x00FF00FF) + ((c2>>8) & 0x00FF00FF);
 | 
						|
  uint32_t r = rb >> 16; // extract single color values
 | 
						|
  uint32_t b = rb & 0xFFFF;
 | 
						|
  uint32_t w = wg >> 16;
 | 
						|
  uint32_t g = wg & 0xFFFF;
 | 
						|
 | 
						|
  if (preserveCR) { // preserve color ratios
 | 
						|
    uint32_t max = std::max(r,g); // check for overflow note
 | 
						|
    max = std::max(max,b);
 | 
						|
    max = std::max(max,w);
 | 
						|
    //unsigned max = r; // check for overflow note
 | 
						|
    //max = g > max ? g : max;
 | 
						|
    //max = b > max ? b : max;
 | 
						|
    //max = w > max ? w : max;
 | 
						|
    if (max > 255) {
 | 
						|
      uint32_t scale = (uint32_t(255)<<8) / max; // division of two 8bit (shifted) values does not work -> use bit shifts and multiplaction instead
 | 
						|
      rb = ((rb * scale) >> 8) & 0x00FF00FF; //
 | 
						|
      wg = (wg * scale) & 0xFF00FF00;
 | 
						|
    } else wg = wg << 8; //shift white and green back to correct position
 | 
						|
    return rb | wg;
 | 
						|
  } else {
 | 
						|
    r = r > 255 ? 255 : r;
 | 
						|
    g = g > 255 ? 255 : g;
 | 
						|
    b = b > 255 ? 255 : b;
 | 
						|
    w = w > 255 ? 255 : w;
 | 
						|
    return RGBW32(r,g,b,w);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * fades color toward black
 | 
						|
 * if using "video" method the resulting color will never become black unless it is already black
 | 
						|
 */
 | 
						|
 | 
						|
uint32_t color_fade(uint32_t c1, uint8_t amount, bool video)
 | 
						|
{
 | 
						|
  if (amount == 255) return c1;
 | 
						|
  if (c1 == BLACK || amount == 0) return BLACK;
 | 
						|
  uint32_t scaledcolor; // color order is: W R G B from MSB to LSB
 | 
						|
  uint32_t scale = amount; // 32bit for faster calculation
 | 
						|
  uint32_t addRemains = 0;
 | 
						|
  if (!video) scale++; // add one for correct scaling using bitshifts
 | 
						|
  else { // video scaling: make sure colors do not dim to zero if they started non-zero
 | 
						|
    addRemains  = R(c1) ? 0x00010000 : 0;
 | 
						|
    addRemains |= G(c1) ? 0x00000100 : 0;
 | 
						|
    addRemains |= B(c1) ? 0x00000001 : 0;
 | 
						|
    addRemains |= W(c1) ? 0x01000000 : 0;
 | 
						|
  }
 | 
						|
  uint32_t rb = (((c1 & 0x00FF00FF) * scale) >> 8) & 0x00FF00FF; // scale red and blue
 | 
						|
  uint32_t wg = (((c1 & 0xFF00FF00) >> 8) * scale) & 0xFF00FF00; // scale white and green
 | 
						|
  scaledcolor = (rb | wg) + addRemains;
 | 
						|
  return scaledcolor;
 | 
						|
}
 | 
						|
 | 
						|
// 1:1 replacement of fastled function optimized for ESP, slightly faster, more accurate and uses less flash (~ -200bytes)
 | 
						|
uint32_t ColorFromPaletteWLED(const CRGBPalette16& pal, unsigned index, uint8_t brightness, TBlendType blendType)
 | 
						|
{
 | 
						|
  if (blendType == LINEARBLEND_NOWRAP) {
 | 
						|
    index = (index * 0xF0) >> 8; // Blend range is affected by lo4 blend of values, remap to avoid wrapping
 | 
						|
  }
 | 
						|
  uint32_t clr32;
 | 
						|
  unsigned hi4 = byte(index) >> 4;
 | 
						|
  unsigned lo4 = (index & 0x0F);
 | 
						|
  const CRGB* entry = (CRGB*)&(pal[0]) + hi4;
 | 
						|
  if(lo4 && blendType != NOBLEND) {
 | 
						|
    unsigned red1   = entry->r;
 | 
						|
    unsigned green1 = entry->g;
 | 
						|
    unsigned blue1  = entry->b;
 | 
						|
    if (hi4 == 15) entry = &(pal[0]);
 | 
						|
    else ++entry;
 | 
						|
    unsigned f2 = (lo4 << 4);
 | 
						|
    unsigned f1 = 256 - f2;
 | 
						|
    red1   = (red1 * f1 + (unsigned)entry->r * f2) >> 8; // note: using  color_blend() is 20% slower
 | 
						|
    green1 = (green1 * f1 + (unsigned)entry->g * f2) >> 8;
 | 
						|
    blue1  = (blue1 * f1 + (unsigned)entry->b * f2) >> 8;
 | 
						|
    clr32 = RGBW32(red1, green1, blue1, 0);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    clr32 = RGBW32(entry->r, entry->g, entry->b, 0);
 | 
						|
  if (brightness < 255) { // note: zero checking could be done to return black but that is hardly ever used so it is omitted
 | 
						|
    clr32 = color_fade(clr32, brightness);
 | 
						|
  }
 | 
						|
  return clr32;
 | 
						|
}
 | 
						|
 | 
						|
void setRandomColor(byte* rgb)
 | 
						|
{
 | 
						|
  lastRandomIndex = get_random_wheel_index(lastRandomIndex);
 | 
						|
  colorHStoRGB(lastRandomIndex*256,255,rgb);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * generates a random palette based on harmonic color theory
 | 
						|
 * takes a base palette as the input, it will choose one color of the base palette and keep it
 | 
						|
 */
 | 
						|
CRGBPalette16 generateHarmonicRandomPalette(const CRGBPalette16 &basepalette)
 | 
						|
{
 | 
						|
  CHSV palettecolors[4]; // array of colors for the new palette
 | 
						|
  uint8_t keepcolorposition = hw_random8(4); // color position of current random palette to keep
 | 
						|
  palettecolors[keepcolorposition] = rgb2hsv(basepalette.entries[keepcolorposition*5]); // read one of the base colors of the current palette
 | 
						|
  palettecolors[keepcolorposition].hue += hw_random8(10)-5; // +/- 5 randomness of base color
 | 
						|
  // generate 4 saturation and brightness value numbers
 | 
						|
  // only one saturation is allowed to be below 200 creating mostly vibrant colors
 | 
						|
  // only one brightness value number is allowed below 200, creating mostly bright palettes
 | 
						|
 | 
						|
  for (int i = 0; i < 3; i++) { // generate three high values
 | 
						|
    palettecolors[i].saturation = hw_random8(200,255);
 | 
						|
    palettecolors[i].value = hw_random8(220,255);
 | 
						|
  }
 | 
						|
  // allow one to be lower
 | 
						|
  palettecolors[3].saturation = hw_random8(20,255);
 | 
						|
  palettecolors[3].value = hw_random8(80,255);
 | 
						|
 | 
						|
  // shuffle the arrays
 | 
						|
  for (int i = 3; i > 0; i--) {
 | 
						|
    std::swap(palettecolors[i].saturation, palettecolors[hw_random8(i + 1)].saturation);
 | 
						|
    std::swap(palettecolors[i].value, palettecolors[hw_random8(i + 1)].value);
 | 
						|
  }
 | 
						|
 | 
						|
  // now generate three new hues based off of the hue of the chosen current color
 | 
						|
  uint8_t basehue = palettecolors[keepcolorposition].hue;
 | 
						|
  uint8_t harmonics[3]; // hues that are harmonic but still a little random
 | 
						|
  uint8_t type = hw_random8(5); // choose a harmony type
 | 
						|
 | 
						|
  switch (type) {
 | 
						|
    case 0: // analogous
 | 
						|
      harmonics[0] = basehue + hw_random8(30, 50);
 | 
						|
      harmonics[1] = basehue + hw_random8(10, 30);
 | 
						|
      harmonics[2] = basehue - hw_random8(10, 30);
 | 
						|
      break;
 | 
						|
 | 
						|
    case 1: // triadic
 | 
						|
      harmonics[0] = basehue + 113 + hw_random8(15);
 | 
						|
      harmonics[1] = basehue + 233 + hw_random8(15);
 | 
						|
      harmonics[2] = basehue -   7 + hw_random8(15);
 | 
						|
      break;
 | 
						|
 | 
						|
    case 2: // split-complementary
 | 
						|
      harmonics[0] = basehue + 145 + hw_random8(10);
 | 
						|
      harmonics[1] = basehue + 205 + hw_random8(10);
 | 
						|
      harmonics[2] = basehue -   5 + hw_random8(10);
 | 
						|
      break;
 | 
						|
 | 
						|
    case 3: // square
 | 
						|
      harmonics[0] = basehue +  85 + hw_random8(10);
 | 
						|
      harmonics[1] = basehue + 175 + hw_random8(10);
 | 
						|
      harmonics[2] = basehue + 265 + hw_random8(10);
 | 
						|
     break;
 | 
						|
 | 
						|
    case 4: // tetradic
 | 
						|
      harmonics[0] = basehue +  80 + hw_random8(20);
 | 
						|
      harmonics[1] = basehue + 170 + hw_random8(20);
 | 
						|
      harmonics[2] = basehue -  15 + hw_random8(30);
 | 
						|
     break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (hw_random8() < 128) {
 | 
						|
    // 50:50 chance of shuffling hues or keep the color order
 | 
						|
    for (int i = 2; i > 0; i--) {
 | 
						|
      std::swap(harmonics[i], harmonics[hw_random8(i + 1)]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // now set the hues
 | 
						|
  int j = 0;
 | 
						|
  for (int i = 0; i < 4; i++) {
 | 
						|
    if (i==keepcolorposition) continue; // skip the base color
 | 
						|
    palettecolors[i].hue = harmonics[j];
 | 
						|
    j++;
 | 
						|
  }
 | 
						|
 | 
						|
  bool makepastelpalette = false;
 | 
						|
  if (hw_random8() < 25) { // ~10% chance of desaturated 'pastel' colors
 | 
						|
    makepastelpalette = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // apply saturation & gamma correction
 | 
						|
  CRGB RGBpalettecolors[4];
 | 
						|
  for (int i = 0; i < 4; i++) {
 | 
						|
    if (makepastelpalette && palettecolors[i].saturation > 180) {
 | 
						|
      palettecolors[i].saturation -= 160; //desaturate all four colors
 | 
						|
    }
 | 
						|
    RGBpalettecolors[i] = (CRGB)palettecolors[i]; //convert to RGB
 | 
						|
    RGBpalettecolors[i] = gamma32(((uint32_t)RGBpalettecolors[i]) & 0x00FFFFFFU); //strip alpha from CRGB
 | 
						|
  }
 | 
						|
 | 
						|
  return CRGBPalette16(RGBpalettecolors[0],
 | 
						|
                       RGBpalettecolors[1],
 | 
						|
                       RGBpalettecolors[2],
 | 
						|
                       RGBpalettecolors[3]);
 | 
						|
}
 | 
						|
 | 
						|
CRGBPalette16 generateRandomPalette()  // generate fully random palette
 | 
						|
{
 | 
						|
  return CRGBPalette16(CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
 | 
						|
                       CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
 | 
						|
                       CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)),
 | 
						|
                       CHSV(hw_random8(), hw_random8(160, 255), hw_random8(128, 255)));
 | 
						|
}
 | 
						|
 | 
						|
void hsv2rgb(const CHSV32& hsv, uint32_t& rgb) // convert HSV (16bit hue) to RGB (32bit with white = 0)
 | 
						|
{
 | 
						|
  unsigned int remainder, region, p, q, t;
 | 
						|
  unsigned int h = hsv.h;
 | 
						|
  unsigned int s = hsv.s;
 | 
						|
  unsigned int v = hsv.v;
 | 
						|
  if (s == 0) {
 | 
						|
      rgb = v << 16 | v << 8 | v;
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  region = h / 10923;  // 65536 / 6 = 10923
 | 
						|
  remainder = (h - (region * 10923)) * 6;
 | 
						|
  p = (v * (255 - s)) >> 8;
 | 
						|
  q = (v * (255 - ((s * remainder) >> 16))) >> 8;
 | 
						|
  t = (v * (255 - ((s * (65535 - remainder)) >> 16))) >> 8;
 | 
						|
  switch (region) {
 | 
						|
    case 0:
 | 
						|
      rgb = v << 16 | t << 8 | p; break;
 | 
						|
    case 1:
 | 
						|
      rgb = q << 16 | v << 8 | p; break;
 | 
						|
    case 2:
 | 
						|
      rgb = p << 16 | v << 8 | t; break;
 | 
						|
    case 3:
 | 
						|
      rgb = p << 16 | q << 8 | v; break;
 | 
						|
    case 4:
 | 
						|
      rgb = t << 16 | p << 8 | v; break;
 | 
						|
    default:
 | 
						|
      rgb = v << 16 | p << 8 | q; break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void rgb2hsv(const uint32_t rgb, CHSV32& hsv) // convert RGB to HSV (16bit hue), much more accurate and faster than fastled version
 | 
						|
{
 | 
						|
    hsv.raw = 0;
 | 
						|
    int32_t r = (rgb>>16)&0xFF;
 | 
						|
    int32_t g = (rgb>>8)&0xFF;
 | 
						|
    int32_t b = rgb&0xFF;
 | 
						|
    int32_t minval, maxval, delta;
 | 
						|
    minval = min(r, g);
 | 
						|
    minval = min(minval, b);
 | 
						|
    maxval = max(r, g);
 | 
						|
    maxval = max(maxval, b);
 | 
						|
    if (maxval == 0)  return; // black
 | 
						|
    hsv.v = maxval;
 | 
						|
    delta = maxval - minval;
 | 
						|
    hsv.s = (255 * delta) / maxval;
 | 
						|
    if (hsv.s == 0)  return; // gray value
 | 
						|
    if (maxval == r) hsv.h = (10923 * (g - b)) / delta;
 | 
						|
    else if (maxval == g)  hsv.h = 21845 + (10923 * (b - r)) / delta;
 | 
						|
    else hsv.h = 43690 + (10923 * (r - g)) / delta;
 | 
						|
}
 | 
						|
 | 
						|
void colorHStoRGB(uint16_t hue, byte sat, byte* rgb) { //hue, sat to rgb
 | 
						|
  uint32_t crgb;
 | 
						|
  hsv2rgb(CHSV32(hue, sat, 255), crgb);
 | 
						|
  rgb[0] = byte((crgb) >> 16);
 | 
						|
  rgb[1] = byte((crgb) >> 8);
 | 
						|
  rgb[2] = byte(crgb);
 | 
						|
}
 | 
						|
 | 
						|
//get RGB values from color temperature in K (https://tannerhelland.com/2012/09/18/convert-temperature-rgb-algorithm-code.html)
 | 
						|
void colorKtoRGB(uint16_t kelvin, byte* rgb) //white spectrum to rgb, calc
 | 
						|
{
 | 
						|
  int r = 0, g = 0, b = 0;
 | 
						|
  float temp = kelvin / 100.0f;
 | 
						|
  if (temp <= 66.0f) {
 | 
						|
    r = 255;
 | 
						|
    g = roundf(99.4708025861f * logf(temp) - 161.1195681661f);
 | 
						|
    if (temp <= 19.0f) {
 | 
						|
      b = 0;
 | 
						|
    } else {
 | 
						|
      b = roundf(138.5177312231f * logf((temp - 10.0f)) - 305.0447927307f);
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    r = roundf(329.698727446f * powf((temp - 60.0f), -0.1332047592f));
 | 
						|
    g = roundf(288.1221695283f * powf((temp - 60.0f), -0.0755148492f));
 | 
						|
    b = 255;
 | 
						|
  }
 | 
						|
  //g += 12; //mod by Aircoookie, a bit less accurate but visibly less pinkish
 | 
						|
  rgb[0] = (uint8_t) constrain(r, 0, 255);
 | 
						|
  rgb[1] = (uint8_t) constrain(g, 0, 255);
 | 
						|
  rgb[2] = (uint8_t) constrain(b, 0, 255);
 | 
						|
  rgb[3] = 0;
 | 
						|
}
 | 
						|
 | 
						|
void colorCTtoRGB(uint16_t mired, byte* rgb) //white spectrum to rgb, bins
 | 
						|
{
 | 
						|
  //this is only an approximation using WS2812B with gamma correction enabled
 | 
						|
  if (mired > 475) {
 | 
						|
    rgb[0]=255;rgb[1]=199;rgb[2]=92;//500
 | 
						|
  } else if (mired > 425) {
 | 
						|
    rgb[0]=255;rgb[1]=213;rgb[2]=118;//450
 | 
						|
  } else if (mired > 375) {
 | 
						|
    rgb[0]=255;rgb[1]=216;rgb[2]=118;//400
 | 
						|
  } else if (mired > 325) {
 | 
						|
    rgb[0]=255;rgb[1]=234;rgb[2]=140;//350
 | 
						|
  } else if (mired > 275) {
 | 
						|
    rgb[0]=255;rgb[1]=243;rgb[2]=160;//300
 | 
						|
  } else if (mired > 225) {
 | 
						|
    rgb[0]=250;rgb[1]=255;rgb[2]=188;//250
 | 
						|
  } else if (mired > 175) {
 | 
						|
    rgb[0]=247;rgb[1]=255;rgb[2]=215;//200
 | 
						|
  } else {
 | 
						|
    rgb[0]=237;rgb[1]=255;rgb[2]=239;//150
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef WLED_DISABLE_HUESYNC
 | 
						|
void colorXYtoRGB(float x, float y, byte* rgb) //coordinates to rgb (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
 | 
						|
{
 | 
						|
  float z = 1.0f - x - y;
 | 
						|
  float X = (1.0f / y) * x;
 | 
						|
  float Z = (1.0f / y) * z;
 | 
						|
  float r = (int)255*(X * 1.656492f - 0.354851f - Z * 0.255038f);
 | 
						|
  float g = (int)255*(-X * 0.707196f + 1.655397f + Z * 0.036152f);
 | 
						|
  float b = (int)255*(X * 0.051713f - 0.121364f + Z * 1.011530f);
 | 
						|
  if (r > b && r > g && r > 1.0f) {
 | 
						|
    // red is too big
 | 
						|
    g = g / r;
 | 
						|
    b = b / r;
 | 
						|
    r = 1.0f;
 | 
						|
  } else if (g > b && g > r && g > 1.0f) {
 | 
						|
    // green is too big
 | 
						|
    r = r / g;
 | 
						|
    b = b / g;
 | 
						|
    g = 1.0f;
 | 
						|
  } else if (b > r && b > g && b > 1.0f) {
 | 
						|
    // blue is too big
 | 
						|
    r = r / b;
 | 
						|
    g = g / b;
 | 
						|
    b = 1.0f;
 | 
						|
  }
 | 
						|
  // Apply gamma correction
 | 
						|
  r = r <= 0.0031308f ? 12.92f * r : (1.0f + 0.055f) * powf(r, (1.0f / 2.4f)) - 0.055f;
 | 
						|
  g = g <= 0.0031308f ? 12.92f * g : (1.0f + 0.055f) * powf(g, (1.0f / 2.4f)) - 0.055f;
 | 
						|
  b = b <= 0.0031308f ? 12.92f * b : (1.0f + 0.055f) * powf(b, (1.0f / 2.4f)) - 0.055f;
 | 
						|
 | 
						|
  if (r > b && r > g) {
 | 
						|
    // red is biggest
 | 
						|
    if (r > 1.0f) {
 | 
						|
      g = g / r;
 | 
						|
      b = b / r;
 | 
						|
      r = 1.0f;
 | 
						|
    }
 | 
						|
  } else if (g > b && g > r) {
 | 
						|
    // green is biggest
 | 
						|
    if (g > 1.0f) {
 | 
						|
      r = r / g;
 | 
						|
      b = b / g;
 | 
						|
      g = 1.0f;
 | 
						|
    }
 | 
						|
  } else if (b > r && b > g) {
 | 
						|
    // blue is biggest
 | 
						|
    if (b > 1.0f) {
 | 
						|
      r = r / b;
 | 
						|
      g = g / b;
 | 
						|
      b = 1.0f;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  rgb[0] = byte(255.0f*r);
 | 
						|
  rgb[1] = byte(255.0f*g);
 | 
						|
  rgb[2] = byte(255.0f*b);
 | 
						|
}
 | 
						|
 | 
						|
void colorRGBtoXY(const byte* rgb, float* xy) //rgb to coordinates (https://www.developers.meethue.com/documentation/color-conversions-rgb-xy)
 | 
						|
{
 | 
						|
  float X = rgb[0] * 0.664511f + rgb[1] * 0.154324f + rgb[2] * 0.162028f;
 | 
						|
  float Y = rgb[0] * 0.283881f + rgb[1] * 0.668433f + rgb[2] * 0.047685f;
 | 
						|
  float Z = rgb[0] * 0.000088f + rgb[1] * 0.072310f + rgb[2] * 0.986039f;
 | 
						|
  xy[0] = X / (X + Y + Z);
 | 
						|
  xy[1] = Y / (X + Y + Z);
 | 
						|
}
 | 
						|
#endif // WLED_DISABLE_HUESYNC
 | 
						|
 | 
						|
//RRGGBB / WWRRGGBB order for hex
 | 
						|
void colorFromDecOrHexString(byte* rgb, const char* in)
 | 
						|
{
 | 
						|
  if (in[0] == 0) return;
 | 
						|
  char first = in[0];
 | 
						|
  uint32_t c = 0;
 | 
						|
 | 
						|
  if (first == '#' || first == 'h' || first == 'H') //is HEX encoded
 | 
						|
  {
 | 
						|
    c = strtoul(in +1, NULL, 16);
 | 
						|
  } else
 | 
						|
  {
 | 
						|
    c = strtoul(in, NULL, 10);
 | 
						|
  }
 | 
						|
 | 
						|
  rgb[0] = R(c);
 | 
						|
  rgb[1] = G(c);
 | 
						|
  rgb[2] = B(c);
 | 
						|
  rgb[3] = W(c);
 | 
						|
}
 | 
						|
 | 
						|
//contrary to the colorFromDecOrHexString() function, this uses the more standard RRGGBB / RRGGBBWW order
 | 
						|
bool colorFromHexString(byte* rgb, const char* in) {
 | 
						|
  if (in == nullptr) return false;
 | 
						|
  size_t inputSize = strnlen(in, 9);
 | 
						|
  if (inputSize != 6 && inputSize != 8) return false;
 | 
						|
 | 
						|
  uint32_t c = strtoul(in, NULL, 16);
 | 
						|
 | 
						|
  if (inputSize == 6) {
 | 
						|
    rgb[0] = (c >> 16);
 | 
						|
    rgb[1] = (c >>  8);
 | 
						|
    rgb[2] =  c       ;
 | 
						|
  } else {
 | 
						|
    rgb[0] = (c >> 24);
 | 
						|
    rgb[1] = (c >> 16);
 | 
						|
    rgb[2] = (c >>  8);
 | 
						|
    rgb[3] =  c       ;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline float minf(float v, float w)
 | 
						|
{
 | 
						|
  if (w > v) return v;
 | 
						|
  return w;
 | 
						|
}
 | 
						|
 | 
						|
static inline float maxf(float v, float w)
 | 
						|
{
 | 
						|
  if (w > v) return w;
 | 
						|
  return v;
 | 
						|
}
 | 
						|
 | 
						|
// adjust RGB values based on color temperature in K (range [2800-10200]) (https://en.wikipedia.org/wiki/Color_balance)
 | 
						|
// called from bus manager when color correction is enabled!
 | 
						|
uint32_t colorBalanceFromKelvin(uint16_t kelvin, uint32_t rgb)
 | 
						|
{
 | 
						|
  //remember so that slow colorKtoRGB() doesn't have to run for every setPixelColor()
 | 
						|
  static byte correctionRGB[4] = {0,0,0,0};
 | 
						|
  static uint16_t lastKelvin = 0;
 | 
						|
  if (lastKelvin != kelvin) colorKtoRGB(kelvin, correctionRGB);  // convert Kelvin to RGB
 | 
						|
  lastKelvin = kelvin;
 | 
						|
  byte rgbw[4];
 | 
						|
  rgbw[0] = ((uint16_t) correctionRGB[0] * R(rgb)) /255; // correct R
 | 
						|
  rgbw[1] = ((uint16_t) correctionRGB[1] * G(rgb)) /255; // correct G
 | 
						|
  rgbw[2] = ((uint16_t) correctionRGB[2] * B(rgb)) /255; // correct B
 | 
						|
  rgbw[3] =                                W(rgb);
 | 
						|
  return RGBW32(rgbw[0],rgbw[1],rgbw[2],rgbw[3]);
 | 
						|
}
 | 
						|
 | 
						|
//approximates a Kelvin color temperature from an RGB color.
 | 
						|
//this does no check for the "whiteness" of the color,
 | 
						|
//so should be used combined with a saturation check (as done by auto-white)
 | 
						|
//values from http://www.vendian.org/mncharity/dir3/blackbody/UnstableURLs/bbr_color.html (10deg)
 | 
						|
//equation spreadsheet at https://bit.ly/30RkHaN
 | 
						|
//accuracy +-50K from 1900K up to 8000K
 | 
						|
//minimum returned: 1900K, maximum returned: 10091K (range of 8192)
 | 
						|
uint16_t approximateKelvinFromRGB(uint32_t rgb) {
 | 
						|
  //if not either red or blue is 255, color is dimmed. Scale up
 | 
						|
  uint8_t r = R(rgb), b = B(rgb);
 | 
						|
  if (r == b) return 6550; //red == blue at about 6600K (also can't go further if both R and B are 0)
 | 
						|
 | 
						|
  if (r > b) {
 | 
						|
    //scale blue up as if red was at 255
 | 
						|
    uint16_t scale = 0xFFFF / r; //get scale factor (range 257-65535)
 | 
						|
    b = ((uint16_t)b * scale) >> 8;
 | 
						|
    //For all temps K<6600 R is bigger than B (for full bri colors R=255)
 | 
						|
    //-> Use 9 linear approximations for blackbody radiation blue values from 2000-6600K (blue is always 0 below 2000K)
 | 
						|
    if (b < 33)  return 1900 + b       *6;
 | 
						|
    if (b < 72)  return 2100 + (b-33)  *10;
 | 
						|
    if (b < 101) return 2492 + (b-72)  *14;
 | 
						|
    if (b < 132) return 2900 + (b-101) *16;
 | 
						|
    if (b < 159) return 3398 + (b-132) *19;
 | 
						|
    if (b < 186) return 3906 + (b-159) *22;
 | 
						|
    if (b < 210) return 4500 + (b-186) *25;
 | 
						|
    if (b < 230) return 5100 + (b-210) *30;
 | 
						|
                 return 5700 + (b-230) *34;
 | 
						|
  } else {
 | 
						|
    //scale red up as if blue was at 255
 | 
						|
    uint16_t scale = 0xFFFF / b; //get scale factor (range 257-65535)
 | 
						|
    r = ((uint16_t)r * scale) >> 8;
 | 
						|
    //For all temps K>6600 B is bigger than R (for full bri colors B=255)
 | 
						|
    //-> Use 2 linear approximations for blackbody radiation red values from 6600-10091K (blue is always 0 below 2000K)
 | 
						|
    if (r > 225) return 6600 + (254-r) *50;
 | 
						|
    uint16_t k = 8080 + (225-r) *86;
 | 
						|
    return (k > 10091) ? 10091 : k;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// gamma lookup table used for color correction (filled on 1st use (cfg.cpp & set.cpp))
 | 
						|
uint8_t NeoGammaWLEDMethod::gammaT[256];
 | 
						|
 | 
						|
// re-calculates & fills gamma table
 | 
						|
void NeoGammaWLEDMethod::calcGammaTable(float gamma)
 | 
						|
{
 | 
						|
  for (size_t i = 0; i < 256; i++) {
 | 
						|
    gammaT[i] = (int)(powf((float)i / 255.0f, gamma) * 255.0f + 0.5f);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
uint8_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct(uint8_t value)
 | 
						|
{
 | 
						|
  if (!gammaCorrectCol) return value;
 | 
						|
  return gammaT[value];
 | 
						|
}
 | 
						|
 | 
						|
// used for color gamma correction
 | 
						|
uint32_t IRAM_ATTR_YN NeoGammaWLEDMethod::Correct32(uint32_t color)
 | 
						|
{
 | 
						|
  if (!gammaCorrectCol) return color;
 | 
						|
  uint8_t w = W(color);
 | 
						|
  uint8_t r = R(color);
 | 
						|
  uint8_t g = G(color);
 | 
						|
  uint8_t b = B(color);
 | 
						|
  w = gammaT[w];
 | 
						|
  r = gammaT[r];
 | 
						|
  g = gammaT[g];
 | 
						|
  b = gammaT[b];
 | 
						|
  return RGBW32(r, g, b, w);
 | 
						|
}
 |