WLED/usermods/usermod_v2_four_line_display/usermod_v2_four_line_display.h

774 wiersze
28 KiB
C++

#pragma once
#include "wled.h"
#include <U8x8lib.h> // from https://github.com/olikraus/u8g2/
//
// Insired by the v1 usermod: ssd1306_i2c_oled_u8g2
//
// v2 usermod for using 128x32 or 128x64 i2c
// OLED displays to provide a four line display
// for WLED.
//
// Dependencies
// * This usermod REQURES the ModeSortUsermod
// * This Usermod works best, by far, when coupled
// with RotaryEncoderUIUsermod.
//
// Make sure to enable NTP and set your time zone in WLED Config | Time.
//
// REQUIREMENT: You must add the following requirements to
// REQUIREMENT: "lib_deps" within platformio.ini / platformio_override.ini
// REQUIREMENT: * U8g2 (the version already in platformio.ini is fine)
// REQUIREMENT: * Wire
//
//The SCL and SDA pins are defined here.
#ifdef ARDUINO_ARCH_ESP32
#ifndef FLD_PIN_SCL
#define FLD_PIN_SCL 22
#endif
#ifndef FLD_PIN_SDA
#define FLD_PIN_SDA 21
#endif
#ifndef FLD_PIN_CLOCKSPI
#define FLD_PIN_CLOCKSPI 18
#endif
#ifndef FLD_PIN_DATASPI
#define FLD_PIN_DATASPI 23
#endif
#ifndef FLD_PIN_DC
#define FLD_PIN_DC 19
#endif
#ifndef FLD_PIN_CS
#define FLD_PIN_CS 5
#endif
#ifndef FLD_PIN_RESET
#define FLD_PIN_RESET 26
#endif
#else
#ifndef FLD_PIN_SCL
#define FLD_PIN_SCL 5
#endif
#ifndef FLD_PIN_SDA
#define FLD_PIN_SDA 4
#endif
#ifndef FLD_PIN_CLOCKSPI
#define FLD_PIN_CLOCKSPI 14
#endif
#ifndef FLD_PIN_DATASPI
#define FLD_PIN_DATASPI 13
#endif
#ifndef FLD_PIN_DC
#define FLD_PIN_DC 12
#endif
#ifndef FLD_PIN_CS
#define FLD_PIN_CS 15
#endif
#ifndef FLD_PIN_RESET
#define FLD_PIN_RESET 16
#endif
#endif
// When to time out to the clock or blank the screen
// if SLEEP_MODE_ENABLED.
#define SCREEN_TIMEOUT_MS 60*1000 // 1 min
#define TIME_INDENT 0
#define DATE_INDENT 2
// Minimum time between redrawing screen in ms
#define USER_LOOP_REFRESH_RATE_MS 1000
// Extra char (+1) for null
#define LINE_BUFFER_SIZE 16+1
typedef enum {
FLD_LINE_BRIGHTNESS = 0,
FLD_LINE_EFFECT_SPEED,
FLD_LINE_EFFECT_INTENSITY,
FLD_LINE_MODE,
FLD_LINE_PALETTE,
FLD_LINE_TIME
} Line4Type;
typedef enum {
NONE = 0,
SSD1306, // U8X8_SSD1306_128X32_UNIVISION_HW_I2C
SH1106, // U8X8_SH1106_128X64_WINSTAR_HW_I2C
SSD1306_64, // U8X8_SSD1306_128X64_NONAME_HW_I2C
SSD1305, // U8X8_SSD1305_128X32_ADAFRUIT_HW_I2C
SSD1305_64, // U8X8_SSD1305_128X64_ADAFRUIT_HW_I2C
SSD1306_SPI, // U8X8_SSD1306_128X32_NONAME_HW_SPI
SSD1306_SPI64 // U8X8_SSD1306_128X64_NONAME_HW_SPI
} DisplayType;
class FourLineDisplayUsermod : public Usermod {
private:
bool initDone = false;
unsigned long lastTime = 0;
// HW interface & configuration
U8X8 *u8x8 = nullptr; // pointer to U8X8 display object
#ifndef FLD_SPI_DEFAULT
int8_t ioPin[5] = {FLD_PIN_SCL, FLD_PIN_SDA, -1, -1, -1}; // I2C pins: SCL, SDA
uint32_t ioFrequency = 400000; // in Hz (minimum is 100000, baseline is 400000 and maximum should be 3400000)
DisplayType type = SSD1306; // display type
#else
int8_t ioPin[5] = {FLD_PIN_CLOCKSPI, FLD_PIN_DATASPI, FLD_PIN_CS, FLD_PIN_DC, FLD_PIN_RESET}; // SPI pins: CLK, MOSI, CS, DC, RST
DisplayType type = SSD1306_SPI; // display type
#endif
bool flip = false; // flip display 180°
uint8_t contrast = 10; // screen contrast
uint8_t lineHeight = 1; // 1 row or 2 rows
uint32_t refreshRate = USER_LOOP_REFRESH_RATE_MS; // in ms
uint32_t screenTimeout = SCREEN_TIMEOUT_MS; // in ms
bool sleepMode = true; // allow screen sleep?
bool clockMode = false; // display clock
// Next variables hold the previous known values to determine if redraw is
// required.
String knownSsid = "";
IPAddress knownIp;
uint8_t knownBrightness = 0;
uint8_t knownEffectSpeed = 0;
uint8_t knownEffectIntensity = 0;
uint8_t knownMode = 0;
uint8_t knownPalette = 0;
uint8_t knownMinute = 99;
uint8_t knownHour = 99;
bool displayTurnedOff = false;
unsigned long lastUpdate = 0;
unsigned long lastRedraw = 0;
unsigned long overlayUntil = 0;
Line4Type lineType = FLD_LINE_BRIGHTNESS;
// Set to 2 or 3 to mark lines 2 or 3. Other values ignored.
byte markLineNum = 0;
// strings to reduce flash memory usage (used more than twice)
static const char _name[];
static const char _contrast[];
static const char _refreshRate[];
static const char _screenTimeOut[];
static const char _flip[];
static const char _sleepMode[];
static const char _clockMode[];
static const char _busClkFrequency[];
// If display does not work or looks corrupted check the
// constructor reference:
// https://github.com/olikraus/u8g2/wiki/u8x8setupcpp
// or check the gallery:
// https://github.com/olikraus/u8g2/wiki/gallery
public:
// gets called once at boot. Do all initialization that doesn't depend on
// network here
void setup() {
if (type == NONE) return;
if (type == SSD1306_SPI || type == SSD1306_SPI64) {
PinManagerPinType pins[5] = { { ioPin[0], true }, { ioPin[1], true}, { ioPin[2], true }, { ioPin[3], true}, { ioPin[4], true }};
if (!pinManager.allocateMultiplePins(pins, 5, PinOwner::UM_FourLineDisplay)) { type=NONE; return; }
} else {
PinManagerPinType pins[2] = { { ioPin[0], true }, { ioPin[1], true} };
if (!pinManager.allocateMultiplePins(pins, 2, PinOwner::UM_FourLineDisplay)) { type=NONE; return; }
}
DEBUG_PRINTLN(F("Allocating display."));
switch (type) {
case SSD1306:
#ifdef ESP8266
if (!(ioPin[0]==5 && ioPin[1]==4))
u8x8 = (U8X8 *) new U8X8_SSD1306_128X32_UNIVISION_SW_I2C(ioPin[0], ioPin[1]); // SCL, SDA, reset
else
#endif
u8x8 = (U8X8 *) new U8X8_SSD1306_128X32_UNIVISION_HW_I2C(U8X8_PIN_NONE, ioPin[0], ioPin[1]); // Pins are Reset, SCL, SDA
lineHeight = 1;
break;
case SH1106:
#ifdef ESP8266
if (!(ioPin[0]==5 && ioPin[1]==4))
u8x8 = (U8X8 *) new U8X8_SH1106_128X64_WINSTAR_SW_I2C(ioPin[0], ioPin[1]); // SCL, SDA, reset
else
#endif
u8x8 = (U8X8 *) new U8X8_SH1106_128X64_WINSTAR_HW_I2C(U8X8_PIN_NONE, ioPin[0], ioPin[1]); // Pins are Reset, SCL, SDA
lineHeight = 2;
break;
case SSD1306_64:
#ifdef ESP8266
if (!(ioPin[0]==5 && ioPin[1]==4))
u8x8 = (U8X8 *) new U8X8_SSD1306_128X64_NONAME_SW_I2C(ioPin[0], ioPin[1]); // SCL, SDA, reset
else
#endif
u8x8 = (U8X8 *) new U8X8_SSD1306_128X64_NONAME_HW_I2C(U8X8_PIN_NONE, ioPin[0], ioPin[1]); // Pins are Reset, SCL, SDA
lineHeight = 2;
break;
case SSD1305:
#ifdef ESP8266
if (!(ioPin[0]==5 && ioPin[1]==4))
u8x8 = (U8X8 *) new U8X8_SSD1305_128X32_NONAME_SW_I2C(ioPin[0], ioPin[1]); // SCL, SDA, reset
else
#endif
u8x8 = (U8X8 *) new U8X8_SSD1305_128X32_ADAFRUIT_HW_I2C(U8X8_PIN_NONE, ioPin[0], ioPin[1]); // Pins are Reset, SCL, SDA
lineHeight = 1;
break;
case SSD1305_64:
#ifdef ESP8266
if (!(ioPin[0]==5 && ioPin[1]==4))
u8x8 = (U8X8 *) new U8X8_SSD1305_128X64_ADAFRUIT_SW_I2C(ioPin[0], ioPin[1]); // SCL, SDA, reset
else
#endif
u8x8 = (U8X8 *) new U8X8_SSD1305_128X64_ADAFRUIT_HW_I2C(U8X8_PIN_NONE, ioPin[0], ioPin[1]); // Pins are Reset, SCL, SDA
lineHeight = 2;
break;
case SSD1306_SPI:
if (!(ioPin[0]==FLD_PIN_CLOCKSPI && ioPin[1]==FLD_PIN_DATASPI)) // if not overridden these sould be HW accellerated
u8x8 = (U8X8 *) new U8X8_SSD1306_128X32_UNIVISION_4W_SW_SPI(ioPin[0], ioPin[1], ioPin[2], ioPin[3], ioPin[4]);
else
u8x8 = (U8X8 *) new U8X8_SSD1306_128X32_UNIVISION_4W_HW_SPI(ioPin[2], ioPin[3], ioPin[4]); // Pins are cs, dc, reset
lineHeight = 1;
break;
case SSD1306_SPI64:
if (!(ioPin[0]==FLD_PIN_CLOCKSPI && ioPin[1]==FLD_PIN_DATASPI)) // if not overridden these sould be HW accellerated
u8x8 = (U8X8 *) new U8X8_SSD1306_128X64_NONAME_4W_SW_SPI(ioPin[0], ioPin[1], ioPin[2], ioPin[3], ioPin[4]);
else
u8x8 = (U8X8 *) new U8X8_SSD1306_128X64_NONAME_4W_HW_SPI(ioPin[2], ioPin[3], ioPin[4]); // Pins are cs, dc, reset
lineHeight = 2;
break;
default:
u8x8 = nullptr;
}
if (nullptr == u8x8) {
DEBUG_PRINTLN(F("Display init failed."));
for (byte i=0; i<5 && ioPin[i]>=0; i++) pinManager.deallocatePin(ioPin[i], PinOwner::UM_FourLineDisplay);
type = NONE;
return;
}
initDone = true;
DEBUG_PRINTLN(F("Starting display."));
if (!(type == SSD1306_SPI || type == SSD1306_SPI64)) u8x8->setBusClock(ioFrequency); // can be used for SPI too
u8x8->begin();
setFlipMode(flip);
setContrast(contrast); //Contrast setup will help to preserve OLED lifetime. In case OLED need to be brighter increase number up to 255
setPowerSave(0);
drawString(0, 0, "Loading...");
}
// gets called every time WiFi is (re-)connected. Initialize own network
// interfaces here
void connected() {}
/**
* Da loop.
*/
void loop() {
if (millis() - lastUpdate < (clockMode?1000:refreshRate) || strip.isUpdating()) return;
lastUpdate = millis();
redraw(false);
}
/**
* Wrappers for screen drawing
*/
void setFlipMode(uint8_t mode) {
if (type==NONE) return;
u8x8->setFlipMode(mode);
}
void setContrast(uint8_t contrast) {
if (type==NONE) return;
u8x8->setContrast(contrast);
}
void drawString(uint8_t col, uint8_t row, const char *string, bool ignoreLH=false) {
if (type==NONE) return;
u8x8->setFont(u8x8_font_chroma48medium8_r);
if (!ignoreLH && lineHeight==2) u8x8->draw1x2String(col, row, string);
else u8x8->drawString(col, row, string);
}
void draw2x2String(uint8_t col, uint8_t row, const char *string) {
if (type==NONE) return;
u8x8->setFont(u8x8_font_chroma48medium8_r);
u8x8->draw2x2String(col, row, string);
}
void drawGlyph(uint8_t col, uint8_t row, char glyph, const uint8_t *font, bool ignoreLH=false) {
if (type==NONE) return;
u8x8->setFont(font);
if (!ignoreLH && lineHeight==2) u8x8->draw1x2Glyph(col, row, glyph);
else u8x8->drawGlyph(col, row, glyph);
}
uint8_t getCols() {
if (type==NONE) return 0;
return u8x8->getCols();
}
void clear() {
if (type==NONE) return;
u8x8->clear();
}
void setPowerSave(uint8_t save) {
if (type==NONE) return;
u8x8->setPowerSave(save);
}
void center(String &line, uint8_t width) {
int len = line.length();
if (len<width) for (byte i=(width-len)/2; i>0; i--) line = ' ' + line;
for (byte i=line.length(); i<width; i++) line += ' ';
}
/**
* Redraw the screen (but only if things have changed
* or if forceRedraw).
*/
void redraw(bool forceRedraw) {
static bool showName = false;
unsigned long now = millis();
if (type==NONE) return;
if (overlayUntil > 0) {
if (now >= overlayUntil) {
// Time to display the overlay has elapsed.
overlayUntil = 0;
forceRedraw = true;
} else {
// We are still displaying the overlay
// Don't redraw.
return;
}
}
// Check if values which are shown on display changed from the last time.
if (forceRedraw ||
(((apActive) ? String(apSSID) : WiFi.SSID()) != knownSsid) ||
(knownIp != (apActive ? IPAddress(4, 3, 2, 1) : Network.localIP())) ||
(knownBrightness != bri) ||
(knownEffectSpeed != effectSpeed) ||
(knownEffectIntensity != effectIntensity) ||
(knownMode != strip.getMode()) ||
(knownPalette != strip.getSegment(0).palette)) {
knownHour = 99; // force time update
lastRedraw = now; // update lastRedraw marker
} else if (sleepMode && !displayTurnedOff && ((now - lastRedraw)/1000)%5 == 0) {
// change line every 5s
showName = !showName;
switch (lineType) {
case FLD_LINE_BRIGHTNESS:
lineType = FLD_LINE_EFFECT_SPEED;
break;
case FLD_LINE_MODE:
lineType = FLD_LINE_BRIGHTNESS;
break;
case FLD_LINE_PALETTE:
lineType = clockMode ? FLD_LINE_MODE : FLD_LINE_BRIGHTNESS;
break;
case FLD_LINE_EFFECT_SPEED:
lineType = FLD_LINE_EFFECT_INTENSITY;
break;
case FLD_LINE_EFFECT_INTENSITY:
lineType = FLD_LINE_PALETTE;
break;
default:
lineType = FLD_LINE_MODE;
break;
}
knownHour = 99; // force time update
// do not update lastRedraw marker if just switching row contenet
} else {
// Nothing to change.
// Turn off display after 3 minutes with no change.
if(sleepMode && !displayTurnedOff && (millis() - lastRedraw > screenTimeout)) {
// We will still check if there is a change in redraw()
// and turn it back on if it changed.
sleepOrClock(true);
} else if (displayTurnedOff && clockMode) {
showTime();
}
return;
}
// Turn the display back on
if (displayTurnedOff) sleepOrClock(false);
// Update last known values.
knownSsid = apActive ? WiFi.softAPSSID() : WiFi.SSID();
knownIp = apActive ? IPAddress(4, 3, 2, 1) : Network.localIP();
knownBrightness = bri;
knownMode = strip.getMode();
knownPalette = strip.getSegment(0).palette;
knownEffectSpeed = effectSpeed;
knownEffectIntensity = effectIntensity;
// Do the actual drawing
String line;
// First row with Wifi name
drawGlyph(0, 0, 80, u8x8_font_open_iconic_embedded_1x1); // home icon
line = knownSsid.substring(0, getCols() > 1 ? getCols() - 2 : 0);
center(line, getCols()-2);
drawString(1, 0, line.c_str());
// Print `~` char to indicate that SSID is longer, than our display
if (knownSsid.length() > (int)getCols()-1) {
drawString(getCols() - 1, 0, "~");
}
// Second row with IP or Psssword
drawGlyph(0, lineHeight, 68, u8x8_font_open_iconic_embedded_1x1); // wifi icon
// Print password in AP mode and if led is OFF.
if (apActive && bri == 0) {
drawString(1, lineHeight, apPass);
} else {
// alternate IP address and server name
line = knownIp.toString();
if (showName && strcmp(serverDescription, "WLED") != 0) {
line = serverDescription;
}
center(line, getCols()-1);
drawString(1, lineHeight, line.c_str());
}
// draw third and fourth row
drawLine(2, clockMode ? lineType : FLD_LINE_MODE);
drawLine(3, clockMode ? FLD_LINE_TIME : lineType);
drawGlyph(0, 2*lineHeight, 66 + (bri > 0 ? 3 : 0), u8x8_font_open_iconic_weather_2x2); // sun/moon icon
//if (markLineNum>1) drawGlyph(2, markLineNum*lineHeight, 66, u8x8_font_open_iconic_arrow_1x1); // arrow icon
}
void drawLine(uint8_t line, Line4Type lineType) {
char lineBuffer[LINE_BUFFER_SIZE];
switch(lineType) {
case FLD_LINE_BRIGHTNESS:
sprintf_P(lineBuffer, PSTR("Brightness %3d"), bri);
drawString(2, line*lineHeight, lineBuffer);
break;
case FLD_LINE_EFFECT_SPEED:
sprintf_P(lineBuffer, PSTR("FX Speed %3d"), effectSpeed);
drawString(2, line*lineHeight, lineBuffer);
break;
case FLD_LINE_EFFECT_INTENSITY:
sprintf_P(lineBuffer, PSTR("FX Intens. %3d"), effectIntensity);
drawString(2, line*lineHeight, lineBuffer);
break;
case FLD_LINE_MODE:
showCurrentEffectOrPalette(knownMode, JSON_mode_names, line);
break;
case FLD_LINE_PALETTE:
showCurrentEffectOrPalette(knownPalette, JSON_palette_names, line);
break;
case FLD_LINE_TIME:
default:
showTime(false);
break;
}
}
/**
* Display the current effect or palette (desiredEntry)
* on the appropriate line (row).
*/
void showCurrentEffectOrPalette(int knownMode, const char *qstring, uint8_t row) {
char lineBuffer[LINE_BUFFER_SIZE];
uint8_t qComma = 0;
bool insideQuotes = false;
uint8_t printedChars = 0;
char singleJsonSymbol;
// Find the mode name in JSON
for (size_t i = 0; i < strlen_P(qstring); i++) {
singleJsonSymbol = pgm_read_byte_near(qstring + i);
if (singleJsonSymbol == '\0') break;
switch (singleJsonSymbol) {
case '"':
insideQuotes = !insideQuotes;
break;
case '[':
case ']':
break;
case ',':
qComma++;
default:
if (!insideQuotes || (qComma != knownMode)) break;
lineBuffer[printedChars++] = singleJsonSymbol;
}
if ((qComma > knownMode) || (printedChars >= getCols()-2) || printedChars >= sizeof(lineBuffer)-2) break;
}
for (;printedChars < getCols()-2 && printedChars < sizeof(lineBuffer)-2; printedChars++) lineBuffer[printedChars]=' ';
lineBuffer[printedChars] = 0;
drawString(2, row*lineHeight, lineBuffer);
}
/**
* If there screen is off or in clock is displayed,
* this will return true. This allows us to throw away
* the first input from the rotary encoder but
* to wake up the screen.
*/
bool wakeDisplay() {
knownHour = 99;
if (displayTurnedOff) {
// Turn the display back on
sleepOrClock(false);
redraw(true);
return true;
}
return false;
}
/**
* Allows you to show up to two lines as overlay for a
* period of time.
* Clears the screen and prints on the middle two lines.
*/
void overlay(const char* line1, const char *line2, long showHowLong) {
if (displayTurnedOff) {
// Turn the display back on (includes clear())
sleepOrClock(false);
} else {
clear();
}
// Print the overlay
if (line1) {
String buf = line1;
center(buf, getCols());
drawString(0, 1*lineHeight, buf.c_str());
}
if (line2) {
String buf = line2;
center(buf, getCols());
drawString(0, 2*lineHeight, buf.c_str());
}
overlayUntil = millis() + showHowLong;
}
void setLineType(byte lT) {
lineType = (Line4Type) lT;
}
/**
* Line 3 or 4 (last two lines) can be marked with an
* arrow in the first column. Pass 2 or 3 to this to
* specify which line to mark with an arrow.
* Any other values are ignored.
*/
void setMarkLine(byte newMarkLineNum) {
if (newMarkLineNum == 2 || newMarkLineNum == 3) {
markLineNum = newMarkLineNum;
}
else {
markLineNum = 0;
}
}
/**
* Enable sleep (turn the display off) or clock mode.
*/
void sleepOrClock(bool enabled) {
clear();
if (enabled) {
if (clockMode) showTime();
else setPowerSave(1);
displayTurnedOff = true;
} else {
setPowerSave(0);
displayTurnedOff = false;
}
}
/**
* Display the current date and time in large characters
* on the middle rows. Based 24 or 12 hour depending on
* the useAMPM configuration.
*/
void showTime(bool fullScreen = true) {
char lineBuffer[LINE_BUFFER_SIZE];
updateLocalTime();
byte minuteCurrent = minute(localTime);
byte hourCurrent = hour(localTime);
byte secondCurrent = second(localTime);
if (knownMinute == minuteCurrent && knownHour == hourCurrent) {
// Time hasn't changed.
if (!fullScreen) return;
}
knownMinute = minuteCurrent;
knownHour = hourCurrent;
byte currentMonth = month(localTime);
sprintf_P(lineBuffer, PSTR("%s %2d "), monthShortStr(currentMonth), day(localTime));
if (fullScreen)
draw2x2String(DATE_INDENT, lineHeight==1 ? 0 : lineHeight, lineBuffer); // adjust for 8 line displays
else
drawString(2, lineHeight*3, lineBuffer);
byte showHour = hourCurrent;
boolean isAM = false;
if (useAMPM) {
if (showHour == 0) {
showHour = 12;
isAM = true;
}
else if (showHour > 12) {
showHour -= 12;
isAM = false;
}
else {
isAM = true;
}
}
sprintf_P(lineBuffer, (secondCurrent%2 || !fullScreen) ? PSTR("%2d:%02d") : PSTR("%2d %02d"), (useAMPM ? showHour : hourCurrent), minuteCurrent);
// For time, we always use LINE_HEIGHT of 2 since
// we are printing it big.
if (fullScreen) {
draw2x2String(TIME_INDENT+2, lineHeight*2, lineBuffer);
sprintf_P(lineBuffer, PSTR("%02d"), secondCurrent);
if (useAMPM) drawString(12+(fullScreen?0:2), lineHeight*2, (isAM ? "AM" : "PM"), true);
else drawString(12, lineHeight*2+1, lineBuffer, true); // even with double sized rows print seconds in 1 line
} else {
drawString(9+(useAMPM?0:2), lineHeight*3, lineBuffer);
if (useAMPM) drawString(12+(fullScreen?0:2), lineHeight*3, (isAM ? "AM" : "PM"), true);
}
}
/*
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
* Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI.
* Below it is shown how this could be used for e.g. a light sensor
*/
//void addToJsonInfo(JsonObject& root) {
//JsonObject user = root["u"];
//if (user.isNull()) user = root.createNestedObject("u");
//JsonArray data = user.createNestedArray(F("4LineDisplay"));
//data.add(F("Loaded."));
//}
/*
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
//void addToJsonState(JsonObject& root) {
//}
/*
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
//void readFromJsonState(JsonObject& root) {
// if (!initDone) return; // prevent crash on boot applyPreset()
//}
/*
* addToConfig() can be used to add custom persistent settings to the cfg.json file in the "um" (usermod) object.
* It will be called by WLED when settings are actually saved (for example, LED settings are saved)
* If you want to force saving the current state, use serializeConfig() in your loop().
*
* CAUTION: serializeConfig() will initiate a filesystem write operation.
* It might cause the LEDs to stutter and will cause flash wear if called too often.
* Use it sparingly and always in the loop, never in network callbacks!
*
* addToConfig() will also not yet add your setting to one of the settings pages automatically.
* To make that work you still have to add the setting to the HTML, xml.cpp and set.cpp manually.
*
* I highly recommend checking out the basics of ArduinoJson serialization and deserialization in order to use custom settings!
*/
void addToConfig(JsonObject& root) {
JsonObject top = root.createNestedObject(FPSTR(_name));
JsonArray io_pin = top.createNestedArray("pin");
for (byte i=0; i<5; i++) io_pin.add(ioPin[i]);
top["help4PinTypes"] = F("Clk,Data,CS,DC,RST"); // help for Settings page
top["type"] = type;
top[FPSTR(_flip)] = (bool) flip;
top[FPSTR(_contrast)] = contrast;
top[FPSTR(_refreshRate)] = refreshRate/1000;
top[FPSTR(_screenTimeOut)] = screenTimeout/1000;
top[FPSTR(_sleepMode)] = (bool) sleepMode;
top[FPSTR(_clockMode)] = (bool) clockMode;
top[FPSTR(_busClkFrequency)] = ioFrequency/1000;
DEBUG_PRINTLN(F("4 Line Display config saved."));
}
/*
* readFromConfig() can be used to read back the custom settings you added with addToConfig().
* This is called by WLED when settings are loaded (currently this only happens once immediately after boot)
*
* readFromConfig() is called BEFORE setup(). This means you can use your persistent values in setup() (e.g. pin assignments, buffer sizes),
* but also that if you want to write persistent values to a dynamic buffer, you'd need to allocate it here instead of in setup.
* If you don't know what that is, don't fret. It most likely doesn't affect your use case :)
*/
bool readFromConfig(JsonObject& root) {
bool needsRedraw = false;
DisplayType newType = type;
int8_t newPin[5]; for (byte i=0; i<5; i++) newPin[i] = ioPin[i];
JsonObject top = root[FPSTR(_name)];
if (top.isNull()) {
DEBUG_PRINT(FPSTR(_name));
DEBUG_PRINTLN(F(": No config found. (Using defaults.)"));
return false;
}
newType = top["type"] | newType;
for (byte i=0; i<5; i++) newPin[i] = top["pin"][i] | ioPin[i];
flip = top[FPSTR(_flip)] | flip;
contrast = top[FPSTR(_contrast)] | contrast;
refreshRate = (top[FPSTR(_refreshRate)] | refreshRate/1000) * 1000;
screenTimeout = (top[FPSTR(_screenTimeOut)] | screenTimeout/1000) * 1000;
sleepMode = top[FPSTR(_sleepMode)] | sleepMode;
clockMode = top[FPSTR(_clockMode)] | clockMode;
ioFrequency = min(3400, max(100, (int)(top[FPSTR(_busClkFrequency)] | ioFrequency/1000))) * 1000; // limit frequency
DEBUG_PRINT(FPSTR(_name));
if (!initDone) {
// first run: reading from cfg.json
for (byte i=0; i<5; i++) ioPin[i] = newPin[i];
type = newType;
DEBUG_PRINTLN(F(" config loaded."));
} else {
DEBUG_PRINTLN(F(" config (re)loaded."));
// changing parameters from settings page
bool pinsChanged = false;
for (byte i=0; i<5; i++) if (ioPin[i] != newPin[i]) { pinsChanged = true; break; }
if (pinsChanged || type!=newType) {
if (type != NONE) delete u8x8;
for (byte i=0; i<5; i++) {
if (ioPin[i]>=0) pinManager.deallocatePin(ioPin[i], PinOwner::UM_FourLineDisplay);
ioPin[i] = newPin[i];
}
if (ioPin[0]<0 || ioPin[1]<0) { // data & clock must be > -1
type = NONE;
return true;
} else type = newType;
setup();
needsRedraw |= true;
}
if (!(type == SSD1306_SPI || type == SSD1306_SPI64)) u8x8->setBusClock(ioFrequency); // can be used for SPI too
setContrast(contrast);
setFlipMode(flip);
if (needsRedraw && !wakeDisplay()) redraw(true);
}
// use "return !top["newestParameter"].isNull();" when updating Usermod with new features
return !(top[_busClkFrequency]).isNull();
}
/*
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
* This could be used in the future for the system to determine whether your usermod is installed.
*/
uint16_t getId() {
return USERMOD_ID_FOUR_LINE_DISP;
}
};
// strings to reduce flash memory usage (used more than twice)
const char FourLineDisplayUsermod::_name[] PROGMEM = "4LineDisplay";
const char FourLineDisplayUsermod::_contrast[] PROGMEM = "contrast";
const char FourLineDisplayUsermod::_refreshRate[] PROGMEM = "refreshRateSec";
const char FourLineDisplayUsermod::_screenTimeOut[] PROGMEM = "screenTimeOutSec";
const char FourLineDisplayUsermod::_flip[] PROGMEM = "flip";
const char FourLineDisplayUsermod::_sleepMode[] PROGMEM = "sleepMode";
const char FourLineDisplayUsermod::_clockMode[] PROGMEM = "clockMode";
const char FourLineDisplayUsermod::_busClkFrequency[] PROGMEM = "i2c-freq-kHz";