WLED/wled00/udp.cpp

853 wiersze
31 KiB
C++

#include "wled.h"
/*
* UDP sync notifier / Realtime / Hyperion / TPM2.NET
*/
#define UDP_SEG_SIZE 36
#define SEG_OFFSET (41+(MAX_NUM_SEGMENTS*UDP_SEG_SIZE))
#define WLEDPACKETSIZE (41+(MAX_NUM_SEGMENTS*UDP_SEG_SIZE)+0)
#define UDP_IN_MAXSIZE 1472
#define PRESUMED_NETWORK_DELAY 3 //how many ms could it take on avg to reach the receiver? This will be added to transmitted times
void notify(byte callMode, bool followUp)
{
if (!udpConnected) return;
if (!syncGroups) return;
switch (callMode)
{
case CALL_MODE_INIT: return;
case CALL_MODE_DIRECT_CHANGE: if (!notifyDirect) return; break;
case CALL_MODE_BUTTON: if (!notifyButton) return; break;
case CALL_MODE_BUTTON_PRESET: if (!notifyButton) return; break;
case CALL_MODE_NIGHTLIGHT: if (!notifyDirect) return; break;
case CALL_MODE_HUE: if (!notifyHue) return; break;
case CALL_MODE_PRESET_CYCLE: if (!notifyDirect) return; break;
case CALL_MODE_ALEXA: if (!notifyAlexa) return; break;
default: return;
}
byte udpOut[WLEDPACKETSIZE];
Segment& mainseg = strip.getMainSegment();
udpOut[0] = 0; //0: wled notifier protocol 1: WARLS protocol
udpOut[1] = callMode;
udpOut[2] = bri;
uint32_t col = mainseg.colors[0];
udpOut[3] = R(col);
udpOut[4] = G(col);
udpOut[5] = B(col);
udpOut[6] = nightlightActive;
udpOut[7] = nightlightDelayMins;
udpOut[8] = mainseg.mode;
udpOut[9] = mainseg.speed;
udpOut[10] = W(col);
//compatibilityVersionByte:
//0: old 1: supports white 2: supports secondary color
//3: supports FX intensity, 24 byte packet 4: supports transitionDelay 5: sup palette
//6: supports timebase syncing, 29 byte packet 7: supports tertiary color 8: supports sys time sync, 36 byte packet
//9: supports sync groups, 37 byte packet 10: supports CCT, 39 byte packet 11: per segment options, variable packet length (40+MAX_NUM_SEGMENTS*3)
//12: enhanced effct sliders, 2D & mapping options
udpOut[11] = 12;
col = mainseg.colors[1];
udpOut[12] = R(col);
udpOut[13] = G(col);
udpOut[14] = B(col);
udpOut[15] = W(col);
udpOut[16] = mainseg.intensity;
udpOut[17] = (transitionDelay >> 0) & 0xFF;
udpOut[18] = (transitionDelay >> 8) & 0xFF;
udpOut[19] = mainseg.palette;
col = mainseg.colors[2];
udpOut[20] = R(col);
udpOut[21] = G(col);
udpOut[22] = B(col);
udpOut[23] = W(col);
udpOut[24] = followUp;
uint32_t t = millis() + strip.timebase;
udpOut[25] = (t >> 24) & 0xFF;
udpOut[26] = (t >> 16) & 0xFF;
udpOut[27] = (t >> 8) & 0xFF;
udpOut[28] = (t >> 0) & 0xFF;
//sync system time
udpOut[29] = toki.getTimeSource();
Toki::Time tm = toki.getTime();
uint32_t unix = tm.sec;
udpOut[30] = (unix >> 24) & 0xFF;
udpOut[31] = (unix >> 16) & 0xFF;
udpOut[32] = (unix >> 8) & 0xFF;
udpOut[33] = (unix >> 0) & 0xFF;
uint16_t ms = tm.ms;
udpOut[34] = (ms >> 8) & 0xFF;
udpOut[35] = (ms >> 0) & 0xFF;
//sync groups
udpOut[36] = syncGroups;
//Might be changed to Kelvin in the future, receiver code should handle that case
//0: byte 38 contains 0-255 value, 255: no valid CCT, 1-254: Kelvin value MSB
udpOut[37] = strip.hasCCTBus() ? 0 : 255; //check this is 0 for the next value to be significant
udpOut[38] = mainseg.cct;
udpOut[39] = strip.getActiveSegmentsNum();
udpOut[40] = UDP_SEG_SIZE; //size of each loop iteration (one segment)
size_t s = 0, nsegs = strip.getSegmentsNum();
for (size_t i = 0; i < nsegs; i++) {
Segment &selseg = strip.getSegment(i);
if (!selseg.isActive()) continue;
uint16_t ofs = 41 + s*UDP_SEG_SIZE; //start of segment offset byte
udpOut[0 +ofs] = s;
udpOut[1 +ofs] = selseg.start >> 8;
udpOut[2 +ofs] = selseg.start & 0xFF;
udpOut[3 +ofs] = selseg.stop >> 8;
udpOut[4 +ofs] = selseg.stop & 0xFF;
udpOut[5 +ofs] = selseg.grouping;
udpOut[6 +ofs] = selseg.spacing;
udpOut[7 +ofs] = selseg.offset >> 8;
udpOut[8 +ofs] = selseg.offset & 0xFF;
udpOut[9 +ofs] = selseg.options & 0x8F; //only take into account selected, mirrored, on, reversed, reverse_y (for 2D); ignore freeze, reset, transitional
udpOut[10+ofs] = selseg.opacity;
udpOut[11+ofs] = selseg.mode;
udpOut[12+ofs] = selseg.speed;
udpOut[13+ofs] = selseg.intensity;
udpOut[14+ofs] = selseg.palette;
udpOut[15+ofs] = R(selseg.colors[0]);
udpOut[16+ofs] = G(selseg.colors[0]);
udpOut[17+ofs] = B(selseg.colors[0]);
udpOut[18+ofs] = W(selseg.colors[0]);
udpOut[19+ofs] = R(selseg.colors[1]);
udpOut[20+ofs] = G(selseg.colors[1]);
udpOut[21+ofs] = B(selseg.colors[1]);
udpOut[22+ofs] = W(selseg.colors[1]);
udpOut[23+ofs] = R(selseg.colors[2]);
udpOut[24+ofs] = G(selseg.colors[2]);
udpOut[25+ofs] = B(selseg.colors[2]);
udpOut[26+ofs] = W(selseg.colors[2]);
udpOut[27+ofs] = selseg.cct;
udpOut[28+ofs] = (selseg.options>>8) & 0xFF; //mirror_y, transpose, 2D mapping & sound
udpOut[29+ofs] = selseg.custom1;
udpOut[30+ofs] = selseg.custom2;
udpOut[31+ofs] = selseg.custom3 | (selseg.check1<<5) | (selseg.check2<<6) | (selseg.check3<<7);
udpOut[32+ofs] = selseg.startY >> 8;
udpOut[33+ofs] = selseg.startY & 0xFF;
udpOut[34+ofs] = selseg.stopY >> 8;
udpOut[35+ofs] = selseg.stopY & 0xFF;
++s;
}
//uint16_t offs = SEG_OFFSET;
//next value to be added has index: udpOut[offs + 0]
IPAddress broadcastIp;
broadcastIp = ~uint32_t(Network.subnetMask()) | uint32_t(Network.gatewayIP());
notifierUdp.beginPacket(broadcastIp, udpPort);
notifierUdp.write(udpOut, WLEDPACKETSIZE);
notifierUdp.endPacket();
notificationSentCallMode = callMode;
notificationSentTime = millis();
notificationCount = followUp ? notificationCount + 1 : 0;
}
void realtimeLock(uint32_t timeoutMs, byte md)
{
if (!realtimeMode && !realtimeOverride) {
uint16_t stop, start;
if (useMainSegmentOnly) {
Segment& mainseg = strip.getMainSegment();
start = mainseg.start;
stop = mainseg.stop;
mainseg.freeze = true;
} else {
start = 0;
stop = strip.getLengthTotal();
}
// clear strip/segment
for (size_t i = start; i < stop; i++) strip.setPixelColor(i,BLACK);
// if WLED was off and using main segment only, freeze non-main segments so they stay off
if (useMainSegmentOnly && bri == 0) {
for (size_t s=0; s < strip.getSegmentsNum(); s++) {
strip.getSegment(s).freeze = true;
}
}
}
// if strip is off (bri==0) and not already in RTM
if (briT == 0 && !realtimeMode && !realtimeOverride) {
strip.setBrightness(scaledBri(briLast), true);
}
if (realtimeTimeout != UINT32_MAX) {
realtimeTimeout = (timeoutMs == 255001 || timeoutMs == 65000) ? UINT32_MAX : millis() + timeoutMs;
}
realtimeMode = md;
if (realtimeOverride) return;
if (arlsForceMaxBri) strip.setBrightness(scaledBri(255), true);
if (briT > 0 && md == REALTIME_MODE_GENERIC) strip.show();
}
void exitRealtime() {
if (!realtimeMode) return;
if (realtimeOverride == REALTIME_OVERRIDE_ONCE) realtimeOverride = REALTIME_OVERRIDE_NONE;
strip.setBrightness(scaledBri(bri), true);
realtimeTimeout = 0; // cancel realtime mode immediately
realtimeMode = REALTIME_MODE_INACTIVE; // inform UI immediately
realtimeIP[0] = 0;
if (useMainSegmentOnly) { // unfreeze live segment again
strip.getMainSegment().freeze = false;
}
updateInterfaces(CALL_MODE_WS_SEND);
}
#define TMP2NET_OUT_PORT 65442
void sendTPM2Ack() {
notifierUdp.beginPacket(notifierUdp.remoteIP(), TMP2NET_OUT_PORT);
uint8_t response_ack = 0xac;
notifierUdp.write(&response_ack, 1);
notifierUdp.endPacket();
}
void handleNotifications()
{
IPAddress localIP;
//send second notification if enabled
if(udpConnected && (notificationCount < udpNumRetries) && ((millis()-notificationSentTime) > 250)){
notify(notificationSentCallMode,true);
}
if (e131NewData && millis() - strip.getLastShow() > 15)
{
e131NewData = false;
strip.show();
}
//unlock strip when realtime UDP times out
if (realtimeMode && millis() > realtimeTimeout) exitRealtime();
//receive UDP notifications
if (!udpConnected) return;
bool isSupp = false;
size_t packetSize = notifierUdp.parsePacket();
if (!packetSize && udp2Connected) {
packetSize = notifier2Udp.parsePacket();
isSupp = true;
}
//hyperion / raw RGB
if (!packetSize && udpRgbConnected) {
packetSize = rgbUdp.parsePacket();
if (packetSize) {
if (!receiveDirect) return;
if (packetSize > UDP_IN_MAXSIZE || packetSize < 3) return;
realtimeIP = rgbUdp.remoteIP();
DEBUG_PRINTLN(rgbUdp.remoteIP());
uint8_t lbuf[packetSize];
rgbUdp.read(lbuf, packetSize);
realtimeLock(realtimeTimeoutMs, REALTIME_MODE_HYPERION);
if (realtimeOverride && !(realtimeMode && useMainSegmentOnly)) return;
uint16_t id = 0;
uint16_t totalLen = strip.getLengthTotal();
for (size_t i = 0; i < packetSize -2; i += 3)
{
setRealtimePixel(id, lbuf[i], lbuf[i+1], lbuf[i+2], 0);
id++; if (id >= totalLen) break;
}
if (!(realtimeMode && useMainSegmentOnly)) strip.show();
return;
}
}
if (!(receiveNotifications || receiveDirect)) return;
localIP = Network.localIP();
//notifier and UDP realtime
if (!packetSize || packetSize > UDP_IN_MAXSIZE) return;
if (!isSupp && notifierUdp.remoteIP() == localIP) return; //don't process broadcasts we send ourselves
uint8_t udpIn[packetSize +1];
uint16_t len;
if (isSupp) len = notifier2Udp.read(udpIn, packetSize);
else len = notifierUdp.read(udpIn, packetSize);
// WLED nodes info notifications
if (isSupp && udpIn[0] == 255 && udpIn[1] == 1 && len >= 40) {
if (!nodeListEnabled || notifier2Udp.remoteIP() == localIP) return;
uint8_t unit = udpIn[39];
NodesMap::iterator it = Nodes.find(unit);
if (it == Nodes.end() && Nodes.size() < WLED_MAX_NODES) { // Create a new element when not present
Nodes[unit].age = 0;
it = Nodes.find(unit);
}
if (it != Nodes.end()) {
for (size_t x = 0; x < 4; x++) {
it->second.ip[x] = udpIn[x + 2];
}
it->second.age = 0; // reset 'age counter'
char tmpNodeName[33] = { 0 };
memcpy(&tmpNodeName[0], reinterpret_cast<byte *>(&udpIn[6]), 32);
tmpNodeName[32] = 0;
it->second.nodeName = tmpNodeName;
it->second.nodeName.trim();
it->second.nodeType = udpIn[38];
uint32_t build = 0;
if (len >= 44)
for (size_t i=0; i<sizeof(uint32_t); i++)
build |= udpIn[40+i]<<(8*i);
it->second.build = build;
}
return;
}
//wled notifier, ignore if realtime packets active
if (udpIn[0] == 0 && !realtimeMode && receiveNotifications)
{
//ignore notification if received within a second after sending a notification ourselves
if (millis() - notificationSentTime < 1000) return;
if (udpIn[1] > 199) return; //do not receive custom versions
//compatibilityVersionByte:
byte version = udpIn[11];
// if we are not part of any sync group ignore message
if (version < 9 || version > 199) {
// legacy senders are treated as if sending in sync group 1 only
if (!(receiveGroups & 0x01)) return;
} else if (!(receiveGroups & udpIn[36])) return;
bool someSel = (receiveNotificationBrightness || receiveNotificationColor || receiveNotificationEffects);
//apply colors from notification to main segment, only if not syncing full segments
if ((receiveNotificationColor || !someSel) && (version < 11 || !receiveSegmentOptions)) {
// primary color, only apply white if intented (version > 0)
strip.setColor(0, RGBW32(udpIn[3], udpIn[4], udpIn[5], (version > 0) ? udpIn[10] : 0));
if (version > 1) {
strip.setColor(1, RGBW32(udpIn[12], udpIn[13], udpIn[14], udpIn[15])); // secondary color
}
if (version > 6) {
strip.setColor(2, RGBW32(udpIn[20], udpIn[21], udpIn[22], udpIn[23])); // tertiary color
if (version > 9 && version < 200 && udpIn[37] < 255) { // valid CCT/Kelvin value
uint16_t cct = udpIn[38];
if (udpIn[37] > 0) { //Kelvin
cct |= (udpIn[37] << 8);
}
strip.setCCT(cct);
}
}
}
bool timebaseUpdated = false;
//apply effects from notification
bool applyEffects = (receiveNotificationEffects || !someSel);
if (version < 200)
{
if (applyEffects && currentPlaylist >= 0) unloadPlaylist();
if (version > 10 && (receiveSegmentOptions || receiveSegmentBounds)) {
uint8_t numSrcSegs = udpIn[39];
for (size_t i = 0; i < numSrcSegs; i++) {
uint16_t ofs = 41 + i*udpIn[40]; //start of segment offset byte
uint8_t id = udpIn[0 +ofs];
if (id > strip.getSegmentsNum()) break;
Segment& selseg = strip.getSegment(id);
if (!selseg.isActive() || !selseg.isSelected()) continue; //do not apply to non selected segments
uint16_t startY = 0, start = (udpIn[1+ofs] << 8 | udpIn[2+ofs]);
uint16_t stopY = 1, stop = (udpIn[3+ofs] << 8 | udpIn[4+ofs]);
uint16_t offset = (udpIn[7+ofs] << 8 | udpIn[8+ofs]);
if (!receiveSegmentOptions) {
selseg.setUp(start, stop, selseg.grouping, selseg.spacing, offset, startY, stopY);
continue;
}
//for (size_t j = 1; j<4; j++) selseg.setOption(j, (udpIn[9 +ofs] >> j) & 0x01); //only take into account mirrored, on, reversed; ignore selected
selseg.options = (selseg.options & 0x0071U) | (udpIn[9 +ofs] & 0x0E); // ignore selected, freeze, reset & transitional
selseg.setOpacity(udpIn[10+ofs]);
if (applyEffects) {
strip.setMode(id, udpIn[11+ofs]);
selseg.speed = udpIn[12+ofs];
selseg.intensity = udpIn[13+ofs];
selseg.palette = udpIn[14+ofs];
}
if (receiveNotificationColor || !someSel) {
selseg.setColor(0, RGBW32(udpIn[15+ofs],udpIn[16+ofs],udpIn[17+ofs],udpIn[18+ofs]));
selseg.setColor(1, RGBW32(udpIn[19+ofs],udpIn[20+ofs],udpIn[21+ofs],udpIn[22+ofs]));
selseg.setColor(2, RGBW32(udpIn[23+ofs],udpIn[24+ofs],udpIn[25+ofs],udpIn[26+ofs]));
selseg.setCCT(udpIn[27+ofs]);
}
if (version > 11) {
// when applying synced options ignore selected as it may be used as indicator of which segments to sync
// freeze, reset should never be synced
// LSB to MSB: select, reverse, on, mirror, freeze, reset, reverse_y, mirror_y, transpose, map1d2d (3), ssim (2), set (2)
selseg.options = (selseg.options & 0b0000000000110001U) | (udpIn[28+ofs]<<8) | (udpIn[9 +ofs] & 0b11001110U); // ignore selected, freeze, reset
if (applyEffects) {
selseg.custom1 = udpIn[29+ofs];
selseg.custom2 = udpIn[30+ofs];
selseg.custom3 = udpIn[31+ofs] & 0x1F;
selseg.check1 = (udpIn[31+ofs]>>5) & 0x1;
selseg.check1 = (udpIn[31+ofs]>>6) & 0x1;
selseg.check1 = (udpIn[31+ofs]>>7) & 0x1;
}
startY = (udpIn[32+ofs] << 8 | udpIn[33+ofs]);
stopY = (udpIn[34+ofs] << 8 | udpIn[35+ofs]);
}
if (receiveSegmentBounds) {
selseg.setUp(start, stop, udpIn[5+ofs], udpIn[6+ofs], offset, startY, stopY);
} else {
selseg.setUp(selseg.start, selseg.stop, udpIn[5+ofs], udpIn[6+ofs], selseg.offset, selseg.startY, selseg.stopY);
}
}
stateChanged = true;
}
// simple effect sync, applies to all selected segments
if (applyEffects && (version < 11 || !receiveSegmentOptions)) {
for (size_t i = 0; i < strip.getSegmentsNum(); i++) {
Segment& seg = strip.getSegment(i);
if (!seg.isActive() || !seg.isSelected()) continue;
seg.setMode(udpIn[8]);
seg.speed = udpIn[9];
if (version > 2) seg.intensity = udpIn[16];
if (version > 4) seg.setPalette(udpIn[19]);
}
stateChanged = true;
}
if (applyEffects && version > 5) {
uint32_t t = (udpIn[25] << 24) | (udpIn[26] << 16) | (udpIn[27] << 8) | (udpIn[28]);
t += PRESUMED_NETWORK_DELAY; //adjust trivially for network delay
t -= millis();
strip.timebase = t;
timebaseUpdated = true;
}
}
//adjust system time, but only if sender is more accurate than self
if (version > 7 && version < 200)
{
Toki::Time tm;
tm.sec = (udpIn[30] << 24) | (udpIn[31] << 16) | (udpIn[32] << 8) | (udpIn[33]);
tm.ms = (udpIn[34] << 8) | (udpIn[35]);
if (udpIn[29] > toki.getTimeSource()) { //if sender's time source is more accurate
toki.adjust(tm, PRESUMED_NETWORK_DELAY); //adjust trivially for network delay
uint8_t ts = TOKI_TS_UDP;
if (udpIn[29] > 99) ts = TOKI_TS_UDP_NTP;
else if (udpIn[29] >= TOKI_TS_SEC) ts = TOKI_TS_UDP_SEC;
toki.setTime(tm, ts);
} else if (timebaseUpdated && toki.getTimeSource() > 99) { //if we both have good times, get a more accurate timebase
Toki::Time myTime = toki.getTime();
uint32_t diff = toki.msDifference(tm, myTime);
strip.timebase -= PRESUMED_NETWORK_DELAY; //no need to presume, use difference between NTP times at send and receive points
if (toki.isLater(tm, myTime)) {
strip.timebase += diff;
} else {
strip.timebase -= diff;
}
}
}
if (version > 3)
{
transitionDelayTemp = ((udpIn[17] << 0) & 0xFF) + ((udpIn[18] << 8) & 0xFF00);
}
nightlightActive = udpIn[6];
if (nightlightActive) nightlightDelayMins = udpIn[7];
if (receiveNotificationBrightness || !someSel) bri = udpIn[2];
stateUpdated(CALL_MODE_NOTIFICATION);
return;
}
if (!receiveDirect) return;
//TPM2.NET
if (udpIn[0] == 0x9c)
{
//WARNING: this code assumes that the final TMP2.NET payload is evenly distributed if using multiple packets (ie. frame size is constant)
//if the number of LEDs in your installation doesn't allow that, please include padding bytes at the end of the last packet
byte tpmType = udpIn[1];
if (tpmType == 0xaa) { //TPM2.NET polling, expect answer
sendTPM2Ack(); return;
}
if (tpmType != 0xda) return; //return if notTPM2.NET data
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
realtimeLock(realtimeTimeoutMs, REALTIME_MODE_TPM2NET);
if (realtimeOverride && !(realtimeMode && useMainSegmentOnly)) return;
tpmPacketCount++; //increment the packet count
if (tpmPacketCount == 1) tpmPayloadFrameSize = (udpIn[2] << 8) + udpIn[3]; //save frame size for the whole payload if this is the first packet
byte packetNum = udpIn[4]; //starts with 1!
byte numPackets = udpIn[5];
uint16_t id = (tpmPayloadFrameSize/3)*(packetNum-1); //start LED
uint16_t totalLen = strip.getLengthTotal();
for (size_t i = 6; i < tpmPayloadFrameSize + 4U; i += 3)
{
if (id < totalLen)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
id++;
}
else break;
}
if (tpmPacketCount == numPackets) //reset packet count and show if all packets were received
{
tpmPacketCount = 0;
strip.show();
}
return;
}
//UDP realtime: 1 warls 2 drgb 3 drgbw
if (udpIn[0] > 0 && udpIn[0] < 5)
{
realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP();
DEBUG_PRINTLN(realtimeIP);
if (packetSize < 2) return;
if (udpIn[1] == 0)
{
realtimeTimeout = 0;
return;
} else {
realtimeLock(udpIn[1]*1000 +1, REALTIME_MODE_UDP);
}
if (realtimeOverride && !(realtimeMode && useMainSegmentOnly)) return;
uint16_t totalLen = strip.getLengthTotal();
if (udpIn[0] == 1) //warls
{
for (size_t i = 2; i < packetSize -3; i += 4)
{
setRealtimePixel(udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3], 0);
}
} else if (udpIn[0] == 2) //drgb
{
uint16_t id = 0;
for (size_t i = 2; i < packetSize -2; i += 3)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
id++; if (id >= totalLen) break;
}
} else if (udpIn[0] == 3) //drgbw
{
uint16_t id = 0;
for (size_t i = 2; i < packetSize -3; i += 4)
{
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
id++; if (id >= totalLen) break;
}
} else if (udpIn[0] == 4) //dnrgb
{
uint16_t id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2; i += 3)
{
if (id >= totalLen) break;
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0);
id++;
}
} else if (udpIn[0] == 5) //dnrgbw
{
uint16_t id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00);
for (size_t i = 4; i < packetSize -2; i += 4)
{
if (id >= totalLen) break;
setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]);
id++;
}
}
strip.show();
return;
}
// API over UDP
udpIn[packetSize] = '\0';
if (requestJSONBufferLock(18)) {
if (udpIn[0] >= 'A' && udpIn[0] <= 'Z') { //HTTP API
String apireq = "win"; apireq += '&'; // reduce flash string usage
apireq += (char*)udpIn;
handleSet(nullptr, apireq);
} else if (udpIn[0] == '{') { //JSON API
DeserializationError error = deserializeJson(doc, udpIn);
JsonObject root = doc.as<JsonObject>();
if (!error && !root.isNull()) deserializeState(root);
}
releaseJSONBufferLock();
}
}
void setRealtimePixel(uint16_t i, byte r, byte g, byte b, byte w)
{
uint16_t pix = i + arlsOffset;
if (pix < strip.getLengthTotal()) {
if (!arlsDisableGammaCorrection && gammaCorrectCol) {
r = gamma8(r);
g = gamma8(g);
b = gamma8(b);
w = gamma8(w);
}
if (useMainSegmentOnly) {
Segment &seg = strip.getMainSegment();
if (pix<seg.length()) seg.setPixelColor(pix, r, g, b, w);
} else {
strip.setPixelColor(pix, r, g, b, w);
}
}
}
/*********************************************************************************************\
Refresh aging for remote units, drop if too old...
\*********************************************************************************************/
void refreshNodeList()
{
for (NodesMap::iterator it = Nodes.begin(); it != Nodes.end();) {
bool mustRemove = true;
if (it->second.ip[0] != 0) {
if (it->second.age < 10) {
it->second.age++;
mustRemove = false;
++it;
}
}
if (mustRemove) {
it = Nodes.erase(it);
}
}
}
/*********************************************************************************************\
Broadcast system info to other nodes. (to update node lists)
\*********************************************************************************************/
void sendSysInfoUDP()
{
if (!udp2Connected) return;
IPAddress ip = Network.localIP();
if (!ip || ip == IPAddress(255,255,255,255)) ip = IPAddress(4,3,2,1);
// TODO: make a nice struct of it and clean up
// 0: 1 byte 'binary token 255'
// 1: 1 byte id '1'
// 2: 4 byte ip
// 6: 32 char name
// 38: 1 byte node type id
// 39: 1 byte node id
// 40: 4 byte version ID
// 44 bytes total
// send my info to the world...
uint8_t data[44] = {0};
data[0] = 255;
data[1] = 1;
for (size_t x = 0; x < 4; x++) {
data[x + 2] = ip[x];
}
memcpy((byte *)data + 6, serverDescription, 32);
#ifdef ESP8266
data[38] = NODE_TYPE_ID_ESP8266;
#elif defined(CONFIG_IDF_TARGET_ESP32C3)
data[38] = NODE_TYPE_ID_ESP32C3;
#elif defined(CONFIG_IDF_TARGET_ESP32S3)
data[38] = NODE_TYPE_ID_ESP32S3;
#elif defined(CONFIG_IDF_TARGET_ESP32S2)
data[38] = NODE_TYPE_ID_ESP32S2;
#elif defined(ARDUINO_ARCH_ESP32)
data[38] = NODE_TYPE_ID_ESP32;
#else
data[38] = NODE_TYPE_ID_UNDEFINED;
#endif
if (bri) data[38] |= 0x80U; // add on/off state
data[39] = ip[3]; // unit ID == last IP number
uint32_t build = VERSION;
for (size_t i=0; i<sizeof(uint32_t); i++)
data[40+i] = (build>>(8*i)) & 0xFF;
IPAddress broadcastIP(255, 255, 255, 255);
notifier2Udp.beginPacket(broadcastIP, udpPort2);
notifier2Udp.write(data, sizeof(data));
notifier2Udp.endPacket();
}
/*********************************************************************************************\
* Art-Net, DDP, E131 output - work in progress
\*********************************************************************************************/
#define DDP_HEADER_LEN 10
#define DDP_SYNCPACKET_LEN 10
#define DDP_FLAGS1_VER 0xc0 // version mask
#define DDP_FLAGS1_VER1 0x40 // version=1
#define DDP_FLAGS1_PUSH 0x01
#define DDP_FLAGS1_QUERY 0x02
#define DDP_FLAGS1_REPLY 0x04
#define DDP_FLAGS1_STORAGE 0x08
#define DDP_FLAGS1_TIME 0x10
#define DDP_ID_DISPLAY 1
#define DDP_ID_CONFIG 250
#define DDP_ID_STATUS 251
// 1440 channels per packet
#define DDP_CHANNELS_PER_PACKET 1440 // 480 leds
//
// Send real time UDP updates to the specified client
//
// type - protocol type (0=DDP, 1=E1.31, 2=ArtNet)
// client - the IP address to send to
// length - the number of pixels
// buffer - a buffer of at least length*4 bytes long
// isRGBW - true if the buffer contains 4 components per pixel
static size_t sequenceNumber = 0; // this needs to be shared across all outputs
static const size_t ART_NET_HEADER_SIZE = 12;
static const byte ART_NET_HEADER[] PROGMEM = {0x41,0x72,0x74,0x2d,0x4e,0x65,0x74,0x00,0x00,0x50,0x00,0x0e};
uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, uint8_t *buffer, uint8_t bri, bool isRGBW) {
if (!(apActive || interfacesInited) || !client[0] || !length) return 1; // network not initialised or dummy/unset IP address 031522 ajn added check for ap
WiFiUDP ddpUdp;
switch (type) {
case 0: // DDP
{
// calculate the number of UDP packets we need to send
size_t channelCount = length * (isRGBW? 4:3); // 1 channel for every R,G,B value
size_t packetCount = ((channelCount-1) / DDP_CHANNELS_PER_PACKET) +1;
// there are 3 channels per RGB pixel
uint32_t channel = 0; // TODO: allow specifying the start channel
// the current position in the buffer
size_t bufferOffset = 0;
for (size_t currentPacket = 0; currentPacket < packetCount; currentPacket++) {
if (sequenceNumber > 15) sequenceNumber = 0;
if (!ddpUdp.beginPacket(client, DDP_DEFAULT_PORT)) { // port defined in ESPAsyncE131.h
DEBUG_PRINTLN(F("WiFiUDP.beginPacket returned an error"));
return 1; // problem
}
// the amount of data is AFTER the header in the current packet
size_t packetSize = DDP_CHANNELS_PER_PACKET;
uint8_t flags = DDP_FLAGS1_VER1;
if (currentPacket == (packetCount - 1U)) {
// last packet, set the push flag
// TODO: determine if we want to send an empty push packet to each destination after sending the pixel data
flags = DDP_FLAGS1_VER1 | DDP_FLAGS1_PUSH;
if (channelCount % DDP_CHANNELS_PER_PACKET) {
packetSize = channelCount % DDP_CHANNELS_PER_PACKET;
}
}
// write the header
/*0*/ddpUdp.write(flags);
/*1*/ddpUdp.write(sequenceNumber++ & 0x0F); // sequence may be unnecessary unless we are sending twice (as requested in Sync settings)
/*2*/ddpUdp.write(isRGBW ? DDP_TYPE_RGBW32 : DDP_TYPE_RGB24);
/*3*/ddpUdp.write(DDP_ID_DISPLAY);
// data offset in bytes, 32-bit number, MSB first
/*4*/ddpUdp.write(0xFF & (channel >> 24));
/*5*/ddpUdp.write(0xFF & (channel >> 16));
/*6*/ddpUdp.write(0xFF & (channel >> 8));
/*7*/ddpUdp.write(0xFF & (channel ));
// data length in bytes, 16-bit number, MSB first
/*8*/ddpUdp.write(0xFF & (packetSize >> 8));
/*9*/ddpUdp.write(0xFF & (packetSize ));
// write the colors, the write write(const uint8_t *buffer, size_t size)
// function is just a loop internally too
for (size_t i = 0; i < packetSize; i += (isRGBW?4:3)) {
ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // R
ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // G
ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // B
if (isRGBW) ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // W
}
if (!ddpUdp.endPacket()) {
DEBUG_PRINTLN(F("WiFiUDP.endPacket returned an error"));
return 1; // problem
}
channel += packetSize;
}
} break;
case 1: //E1.31
{
} break;
case 2: //ArtNet
{
// calculate the number of UDP packets we need to send
const size_t channelCount = length * (isRGBW?4:3); // 1 channel for every R,G,B,(W?) value
const size_t ARTNET_CHANNELS_PER_PACKET = isRGBW?512:510; // 512/4=128 RGBW LEDs, 510/3=170 RGB LEDs
const size_t packetCount = ((channelCount-1)/ARTNET_CHANNELS_PER_PACKET)+1;
uint32_t channel = 0;
size_t bufferOffset = 0;
sequenceNumber++;
for (size_t currentPacket = 0; currentPacket < packetCount; currentPacket++) {
if (sequenceNumber > 255) sequenceNumber = 0;
if (!ddpUdp.beginPacket(client, ARTNET_DEFAULT_PORT)) {
DEBUG_PRINTLN(F("Art-Net WiFiUDP.beginPacket returned an error"));
return 1; // borked
}
size_t packetSize = ARTNET_CHANNELS_PER_PACKET;
if (currentPacket == (packetCount - 1U)) {
// last packet
if (channelCount % ARTNET_CHANNELS_PER_PACKET) {
packetSize = channelCount % ARTNET_CHANNELS_PER_PACKET;
}
}
byte header_buffer[ART_NET_HEADER_SIZE];
memcpy_P(header_buffer, ART_NET_HEADER, ART_NET_HEADER_SIZE);
ddpUdp.write(header_buffer, ART_NET_HEADER_SIZE); // This doesn't change. Hard coded ID, OpCode, and protocol version.
ddpUdp.write(sequenceNumber & 0xFF); // sequence number. 1..255
ddpUdp.write(0x00); // physical - more an FYI, not really used for anything. 0..3
ddpUdp.write((currentPacket) & 0xFF); // Universe LSB. 1 full packet == 1 full universe, so just use current packet number.
ddpUdp.write(0x00); // Universe MSB, unused.
ddpUdp.write(0xFF & (packetSize >> 8)); // 16-bit length of channel data, MSB
ddpUdp.write(0xFF & (packetSize )); // 16-bit length of channel data, LSB
for (size_t i = 0; i < packetSize; i += (isRGBW?4:3)) {
ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // R
ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // G
ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // B
if (isRGBW) ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // W
}
if (!ddpUdp.endPacket()) {
DEBUG_PRINTLN(F("Art-Net WiFiUDP.endPacket returned an error"));
return 1; // borked
}
channel += packetSize;
}
} break;
}
return 0;
}