WLED/usermods/EXAMPLE_v2/usermod_v2_example.h

119 wiersze
4.2 KiB
C++

#pragma once
#include "wled.h"
/*
* Usermods allow you to add own functionality to WLED more easily
* See: https://github.com/Aircoookie/WLED/wiki/Add-own-functionality
*
* This is an example for a v2 usermod.
* v2 usermods are class inheritance based and can (but don't have to) implement more functions, each of them is shown in this example.
* Multiple v2 usermods can be added to one compilation easily.
*
* Creating a usermod:
* This file serves as an example. If you want to create a usermod, it is recommended to use usermod_v2_empty.h from the usermods folder as a template.
* Please remember to rename the class and file to a descriptive name.
* You may also use multiple .h and .cpp files.
*
* Using a usermod:
* 1. Copy the usermod into the sketch folder (same folder as wled00.ino)
* 2. Register the usermod by adding #include "usermod_filename.h" in the top and registerUsermod(new MyUsermodClass()) in the bottom of usermods_list.cpp
*/
//class name. Use something descriptive and leave the ": public Usermod" part :)
class MyExampleUsermod : public Usermod {
private:
//Private class members. You can declare variables and functions only accessible to your usermod here
unsigned long lastTime = 0;
public:
//Functions called by WLED
/*
* setup() is called once at boot. WiFi is not yet connected at this point.
* You can use it to initialize variables, sensors or similar.
*/
void setup() {
//Serial.println("Hello from my usermod!");
}
/*
* connected() is called every time the WiFi is (re)connected
* Use it to initialize network interfaces
*/
void connected() {
//Serial.println("Connected to WiFi!");
}
/*
* loop() is called continuously. Here you can check for events, read sensors, etc.
*
* Tips:
* 1. You can use "if (WLED_CONNECTED)" to check for a successful network connection.
* Additionally, "if (WLED_MQTT_CONNECTED)" is available to check for a connection to an MQTT broker.
*
* 2. Try to avoid using the delay() function. NEVER use delays longer than 10 milliseconds.
* Instead, use a timer check as shown here.
*/
void loop() {
if (millis() - lastTime > 1000) {
//Serial.println("I'm alive!");
lastTime = millis();
}
}
/*
* addToJsonInfo() can be used to add custom entries to the /json/info part of the JSON API.
* Creating an "u" object allows you to add custom key/value pairs to the Info section of the WLED web UI.
* Below it is shown how this could be used for e.g. a light sensor
*/
/*
void addToJsonInfo(JsonObject& root)
{
int reading = 20;
//this code adds "u":{"Light":[20," lux"]} to the info object
JsonObject user = root["u"];
if (user.isNull()) user = root.createNestedObject("u");
JsonArray lightArr = user.createNestedArray("Light"); //name
lightArr.add(reading); //value
lightArr.add(" lux"); //unit
}
*/
/*
* addToJsonState() can be used to add custom entries to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void addToJsonState(JsonObject& root)
{
//root["user0"] = userVar0;
}
/*
* readFromJsonState() can be used to receive data clients send to the /json/state part of the JSON API (state object).
* Values in the state object may be modified by connected clients
*/
void readFromJsonState(JsonObject& root)
{
userVar0 = root["user0"] | userVar0; //if "user0" key exists in JSON, update, else keep old value
//if (root["bri"] == 255) Serial.println(F("Don't burn down your garage!"));
}
/*
* getId() allows you to optionally give your V2 usermod an unique ID (please define it in const.h!).
* This could be used in the future for the system to determine whether your usermod is installed.
*/
uint16_t getId()
{
return USERMOD_ID_EXAMPLE;
}
//More methods can be added in the future, this example will then be extended.
//Your usermod will remain compatible as it does not need to implement all methods from the Usermod base class!
};