#ifndef WLED_MATH_H #define WLED_MATH_H /* * Contains some trigonometric functions. * The ANSI C equivalents are likely faster, but using any sin/cos/tan function incurs a memory penalty of 460 bytes on ESP8266, likely for lookup tables. * This implementation has no extra static memory usage. * * Source of the cos_t() function: https://web.eecs.utk.edu/~azh/blog/cosine.html (cos_taylor_literal_6terms) */ #include //PI constant //#define WLED_DEBUG_MATH #define modd(x, y) ((x) - (int)((x) / (y)) * (y)) float cos_t(float x) { x = modd(x, TWO_PI); char sign = 1; if (x > PI) { x -= PI; sign = -1; } float xx = x * x; float res = sign * (1 - ((xx) / (2)) + ((xx * xx) / (24)) - ((xx * xx * xx) / (720)) + ((xx * xx * xx * xx) / (40320)) - ((xx * xx * xx * xx * xx) / (3628800)) + ((xx * xx * xx * xx * xx * xx) / (479001600))); #ifdef WLED_DEBUG_MATH Serial.printf("cos: %f,%f\n",res,cos(x)); #endif return res; } float sin_t(float x) { float res = cos_t(HALF_PI - x); #ifdef WLED_DEBUG_MATH Serial.printf("sin: %f,%f\n",res,sin(x)); #endif return res; } float tan_t(float x) { float c = cos_t(x); if (c==0.0) return 0; float res = sin_t(x) / c; #ifdef WLED_DEBUG_MATH Serial.printf("tan: %f,%f\n",res,tan(x)); #endif return res; } //https://stackoverflow.com/questions/3380628 // Absolute error <= 6.7e-5 float acos_t(float x) { float negate = float(x < 0); float xabs = std::abs(x); float ret = -0.0187293; ret = ret * xabs; ret = ret + 0.0742610; ret = ret * xabs; ret = ret - 0.2121144; ret = ret * xabs; ret = ret + HALF_PI; ret = ret * sqrt(1.0-xabs); ret = ret - 2 * negate * ret; float res = negate * PI + ret; #ifdef WLED_DEBUG_MATH Serial.printf("acos,%f,%f,%f\n",x,res,acos(x)); #endif return res; } float asin_t(float x) { float res = HALF_PI - acos_t(x); #ifdef WLED_DEBUG_MATH Serial.printf("asin,%f,%f,%f\n",x,res,asin(x)); #endif return res; } /* //https://stackoverflow.com/a/42542593 #define A 0.0776509570923569 #define B -0.287434475393028 #define C ((HALF_PI/2) - A - B) //polynominal factors for approximation between 1 and 5 #define C0 0.089494f #define C1 0.974207f #define C2 -0.326175f #define C3 0.05375f #define C4 -0.003445f float atan_t(float x) { bool neg = (x < 0); #ifdef WLED_DEBUG_MATH float xinput = x; #endif x = std::abs(x); float res; if (x > 5.0f) { //atan(x) converges to pi/2 - (1/x) for large values res = HALF_PI - (1.0f/x); } else if (x > 1.0f) { //1 < x < 5 float xx = x * x; res = (C4*xx*xx)+(C3*xx*x)+(C2*xx)+(C1*x)+C0; } else { //this approximation is only for x <= 1 float xx = x * x; res = ((A*xx + B)*xx + C)*x; } if (neg) res = -res; #ifdef WLED_DEBUG_MATH Serial.printf("atan,%f,%f,%f\n",xinput,res,atan(xinput)); #endif return res; } */ //https://stackoverflow.com/a/42542593 #define A 0.0776509570923569 #define B -0.287434475393028 #define C ((HALF_PI/2) - A - B) //polynominal factors for approximation between 1 and 5 #define C0 0.089494f #define C1 0.974207f #define C2 -0.326175f #define C3 0.05375f #define C4 -0.003445f float atan_t(float x) { bool neg = (x < 0); #ifdef WLED_DEBUG_MATH float xinput = x; #endif x = std::abs(x); float res; if (x > 5.0f) { //atan(x) converges to pi/2 - (1/x) for large values res = HALF_PI - (1.0f/x); } else if (x > 1.0f) { //1 < x < 5 float xx = x * x; res = (C4*xx*xx)+(C3*xx*x)+(C2*xx)+(C1*x)+C0; } else { //this approximation is only for x <= 1 float xx = x * x; res = ((A*xx + B)*xx + C)*x; } if (neg) res = -res; #ifdef WLED_DEBUG_MATH Serial.printf("atan,%f,%f,%f\n",xinput,res,atan(xinput)); #endif return res; } float floor_t(float x) { bool neg = x < 0; int val = x; if (neg) val--; #ifdef WLED_DEBUG_MATH Serial.printf("floor: %f,%f\n",val,floor(x)); #endif return val; } float fmod_t(float num, float denom) { int tquot = num / denom; float res = num - tquot * denom; #ifdef WLED_DEBUG_MATH Serial.printf("fmod: %f,%f\n",res,fmod(num,denom)); #endif return res; } #endif