#include "wled.h" /* * UDP sync notifier / Realtime / Hyperion / TPM2.NET */ #define UDP_SEG_SIZE 36 #define SEG_OFFSET (41+(MAX_NUM_SEGMENTS*UDP_SEG_SIZE)) #define WLEDPACKETSIZE (41+(MAX_NUM_SEGMENTS*UDP_SEG_SIZE)+0) #define UDP_IN_MAXSIZE 1472 #define PRESUMED_NETWORK_DELAY 3 //how many ms could it take on avg to reach the receiver? This will be added to transmitted times void notify(byte callMode, bool followUp) { if (!udpConnected) return; if (!syncGroups) return; switch (callMode) { case CALL_MODE_INIT: return; case CALL_MODE_DIRECT_CHANGE: if (!notifyDirect) return; break; case CALL_MODE_BUTTON: if (!notifyButton) return; break; case CALL_MODE_BUTTON_PRESET: if (!notifyButton) return; break; case CALL_MODE_NIGHTLIGHT: if (!notifyDirect) return; break; case CALL_MODE_HUE: if (!notifyHue) return; break; case CALL_MODE_PRESET_CYCLE: if (!notifyDirect) return; break; case CALL_MODE_ALEXA: if (!notifyAlexa) return; break; default: return; } byte udpOut[WLEDPACKETSIZE]; Segment& mainseg = strip.getMainSegment(); udpOut[0] = 0; //0: wled notifier protocol 1: WARLS protocol udpOut[1] = callMode; udpOut[2] = bri; uint32_t col = mainseg.colors[0]; udpOut[3] = R(col); udpOut[4] = G(col); udpOut[5] = B(col); udpOut[6] = nightlightActive; udpOut[7] = nightlightDelayMins; udpOut[8] = mainseg.mode; udpOut[9] = mainseg.speed; udpOut[10] = W(col); //compatibilityVersionByte: //0: old 1: supports white 2: supports secondary color //3: supports FX intensity, 24 byte packet 4: supports transitionDelay 5: sup palette //6: supports timebase syncing, 29 byte packet 7: supports tertiary color 8: supports sys time sync, 36 byte packet //9: supports sync groups, 37 byte packet 10: supports CCT, 39 byte packet 11: per segment options, variable packet length (40+MAX_NUM_SEGMENTS*3) //12: enhanced effct sliders, 2D & mapping options udpOut[11] = 12; col = mainseg.colors[1]; udpOut[12] = R(col); udpOut[13] = G(col); udpOut[14] = B(col); udpOut[15] = W(col); udpOut[16] = mainseg.intensity; udpOut[17] = (transitionDelay >> 0) & 0xFF; udpOut[18] = (transitionDelay >> 8) & 0xFF; udpOut[19] = mainseg.palette; col = mainseg.colors[2]; udpOut[20] = R(col); udpOut[21] = G(col); udpOut[22] = B(col); udpOut[23] = W(col); udpOut[24] = followUp; uint32_t t = millis() + strip.timebase; udpOut[25] = (t >> 24) & 0xFF; udpOut[26] = (t >> 16) & 0xFF; udpOut[27] = (t >> 8) & 0xFF; udpOut[28] = (t >> 0) & 0xFF; //sync system time udpOut[29] = toki.getTimeSource(); Toki::Time tm = toki.getTime(); uint32_t unix = tm.sec; udpOut[30] = (unix >> 24) & 0xFF; udpOut[31] = (unix >> 16) & 0xFF; udpOut[32] = (unix >> 8) & 0xFF; udpOut[33] = (unix >> 0) & 0xFF; uint16_t ms = tm.ms; udpOut[34] = (ms >> 8) & 0xFF; udpOut[35] = (ms >> 0) & 0xFF; //sync groups udpOut[36] = syncGroups; //Might be changed to Kelvin in the future, receiver code should handle that case //0: byte 38 contains 0-255 value, 255: no valid CCT, 1-254: Kelvin value MSB udpOut[37] = strip.hasCCTBus() ? 0 : 255; //check this is 0 for the next value to be significant udpOut[38] = mainseg.cct; udpOut[39] = strip.getActiveSegmentsNum(); udpOut[40] = UDP_SEG_SIZE; //size of each loop iteration (one segment) size_t s = 0, nsegs = strip.getSegmentsNum(); for (size_t i = 0; i < nsegs; i++) { Segment &selseg = strip.getSegment(i); if (!selseg.isActive()) continue; uint16_t ofs = 41 + s*UDP_SEG_SIZE; //start of segment offset byte udpOut[0 +ofs] = s; udpOut[1 +ofs] = selseg.start >> 8; udpOut[2 +ofs] = selseg.start & 0xFF; udpOut[3 +ofs] = selseg.stop >> 8; udpOut[4 +ofs] = selseg.stop & 0xFF; udpOut[5 +ofs] = selseg.grouping; udpOut[6 +ofs] = selseg.spacing; udpOut[7 +ofs] = selseg.offset >> 8; udpOut[8 +ofs] = selseg.offset & 0xFF; udpOut[9 +ofs] = selseg.options & 0x8F; //only take into account selected, mirrored, on, reversed, reverse_y (for 2D); ignore freeze, reset, transitional udpOut[10+ofs] = selseg.opacity; udpOut[11+ofs] = selseg.mode; udpOut[12+ofs] = selseg.speed; udpOut[13+ofs] = selseg.intensity; udpOut[14+ofs] = selseg.palette; udpOut[15+ofs] = R(selseg.colors[0]); udpOut[16+ofs] = G(selseg.colors[0]); udpOut[17+ofs] = B(selseg.colors[0]); udpOut[18+ofs] = W(selseg.colors[0]); udpOut[19+ofs] = R(selseg.colors[1]); udpOut[20+ofs] = G(selseg.colors[1]); udpOut[21+ofs] = B(selseg.colors[1]); udpOut[22+ofs] = W(selseg.colors[1]); udpOut[23+ofs] = R(selseg.colors[2]); udpOut[24+ofs] = G(selseg.colors[2]); udpOut[25+ofs] = B(selseg.colors[2]); udpOut[26+ofs] = W(selseg.colors[2]); udpOut[27+ofs] = selseg.cct; udpOut[28+ofs] = (selseg.options>>8) & 0xFF; //mirror_y, transpose, 2D mapping & sound udpOut[29+ofs] = selseg.custom1; udpOut[30+ofs] = selseg.custom2; udpOut[31+ofs] = selseg.custom3 | (selseg.check1<<5) | (selseg.check2<<6) | (selseg.check3<<7); udpOut[32+ofs] = selseg.startY >> 8; udpOut[33+ofs] = selseg.startY & 0xFF; udpOut[34+ofs] = selseg.stopY >> 8; udpOut[35+ofs] = selseg.stopY & 0xFF; ++s; } //uint16_t offs = SEG_OFFSET; //next value to be added has index: udpOut[offs + 0] IPAddress broadcastIp; broadcastIp = ~uint32_t(Network.subnetMask()) | uint32_t(Network.gatewayIP()); notifierUdp.beginPacket(broadcastIp, udpPort); notifierUdp.write(udpOut, WLEDPACKETSIZE); notifierUdp.endPacket(); notificationSentCallMode = callMode; notificationSentTime = millis(); notificationCount = followUp ? notificationCount + 1 : 0; } void realtimeLock(uint32_t timeoutMs, byte md) { if (!realtimeMode && !realtimeOverride) { uint16_t stop, start; if (useMainSegmentOnly) { Segment& mainseg = strip.getMainSegment(); start = mainseg.start; stop = mainseg.stop; mainseg.freeze = true; } else { start = 0; stop = strip.getLengthTotal(); } // clear strip/segment for (size_t i = start; i < stop; i++) strip.setPixelColor(i,BLACK); // if WLED was off and using main segment only, freeze non-main segments so they stay off if (useMainSegmentOnly && bri == 0) { for (size_t s=0; s < strip.getSegmentsNum(); s++) { strip.getSegment(s).freeze = true; } } } // if strip is off (bri==0) and not already in RTM if (briT == 0 && !realtimeMode && !realtimeOverride) { strip.setBrightness(scaledBri(briLast), true); } if (realtimeTimeout != UINT32_MAX) { realtimeTimeout = (timeoutMs == 255001 || timeoutMs == 65000) ? UINT32_MAX : millis() + timeoutMs; } realtimeMode = md; if (realtimeOverride) return; if (arlsForceMaxBri) strip.setBrightness(scaledBri(255), true); if (briT > 0 && md == REALTIME_MODE_GENERIC) strip.show(); } void exitRealtime() { if (!realtimeMode) return; if (realtimeOverride == REALTIME_OVERRIDE_ONCE) realtimeOverride = REALTIME_OVERRIDE_NONE; strip.setBrightness(scaledBri(bri), true); realtimeTimeout = 0; // cancel realtime mode immediately realtimeMode = REALTIME_MODE_INACTIVE; // inform UI immediately realtimeIP[0] = 0; if (useMainSegmentOnly) { // unfreeze live segment again strip.getMainSegment().freeze = false; } updateInterfaces(CALL_MODE_WS_SEND); } #define TMP2NET_OUT_PORT 65442 void sendTPM2Ack() { notifierUdp.beginPacket(notifierUdp.remoteIP(), TMP2NET_OUT_PORT); uint8_t response_ack = 0xac; notifierUdp.write(&response_ack, 1); notifierUdp.endPacket(); } void handleNotifications() { IPAddress localIP; //send second notification if enabled if(udpConnected && (notificationCount < udpNumRetries) && ((millis()-notificationSentTime) > 250)){ notify(notificationSentCallMode,true); } if (e131NewData && millis() - strip.getLastShow() > 15) { e131NewData = false; strip.show(); } //unlock strip when realtime UDP times out if (realtimeMode && millis() > realtimeTimeout) exitRealtime(); //receive UDP notifications if (!udpConnected) return; bool isSupp = false; size_t packetSize = notifierUdp.parsePacket(); if (!packetSize && udp2Connected) { packetSize = notifier2Udp.parsePacket(); isSupp = true; } //hyperion / raw RGB if (!packetSize && udpRgbConnected) { packetSize = rgbUdp.parsePacket(); if (packetSize) { if (!receiveDirect) return; if (packetSize > UDP_IN_MAXSIZE || packetSize < 3) return; realtimeIP = rgbUdp.remoteIP(); DEBUG_PRINTLN(rgbUdp.remoteIP()); uint8_t lbuf[packetSize]; rgbUdp.read(lbuf, packetSize); realtimeLock(realtimeTimeoutMs, REALTIME_MODE_HYPERION); if (realtimeOverride && !(realtimeMode && useMainSegmentOnly)) return; uint16_t id = 0; uint16_t totalLen = strip.getLengthTotal(); for (size_t i = 0; i < packetSize -2; i += 3) { setRealtimePixel(id, lbuf[i], lbuf[i+1], lbuf[i+2], 0); id++; if (id >= totalLen) break; } if (!(realtimeMode && useMainSegmentOnly)) strip.show(); return; } } if (!(receiveNotifications || receiveDirect)) return; localIP = Network.localIP(); //notifier and UDP realtime if (!packetSize || packetSize > UDP_IN_MAXSIZE) return; if (!isSupp && notifierUdp.remoteIP() == localIP) return; //don't process broadcasts we send ourselves uint8_t udpIn[packetSize +1]; uint16_t len; if (isSupp) len = notifier2Udp.read(udpIn, packetSize); else len = notifierUdp.read(udpIn, packetSize); // WLED nodes info notifications if (isSupp && udpIn[0] == 255 && udpIn[1] == 1 && len >= 40) { if (!nodeListEnabled || notifier2Udp.remoteIP() == localIP) return; uint8_t unit = udpIn[39]; NodesMap::iterator it = Nodes.find(unit); if (it == Nodes.end() && Nodes.size() < WLED_MAX_NODES) { // Create a new element when not present Nodes[unit].age = 0; it = Nodes.find(unit); } if (it != Nodes.end()) { for (size_t x = 0; x < 4; x++) { it->second.ip[x] = udpIn[x + 2]; } it->second.age = 0; // reset 'age counter' char tmpNodeName[33] = { 0 }; memcpy(&tmpNodeName[0], reinterpret_cast(&udpIn[6]), 32); tmpNodeName[32] = 0; it->second.nodeName = tmpNodeName; it->second.nodeName.trim(); it->second.nodeType = udpIn[38]; uint32_t build = 0; if (len >= 44) for (size_t i=0; isecond.build = build; } return; } //wled notifier, ignore if realtime packets active if (udpIn[0] == 0 && !realtimeMode && receiveNotifications) { //ignore notification if received within a second after sending a notification ourselves if (millis() - notificationSentTime < 1000) return; if (udpIn[1] > 199) return; //do not receive custom versions //compatibilityVersionByte: byte version = udpIn[11]; // if we are not part of any sync group ignore message if (version < 9 || version > 199) { // legacy senders are treated as if sending in sync group 1 only if (!(receiveGroups & 0x01)) return; } else if (!(receiveGroups & udpIn[36])) return; bool someSel = (receiveNotificationBrightness || receiveNotificationColor || receiveNotificationEffects); //apply colors from notification to main segment, only if not syncing full segments if ((receiveNotificationColor || !someSel) && (version < 11 || !receiveSegmentOptions)) { // primary color, only apply white if intented (version > 0) strip.setColor(0, RGBW32(udpIn[3], udpIn[4], udpIn[5], (version > 0) ? udpIn[10] : 0)); if (version > 1) { strip.setColor(1, RGBW32(udpIn[12], udpIn[13], udpIn[14], udpIn[15])); // secondary color } if (version > 6) { strip.setColor(2, RGBW32(udpIn[20], udpIn[21], udpIn[22], udpIn[23])); // tertiary color if (version > 9 && version < 200 && udpIn[37] < 255) { // valid CCT/Kelvin value uint16_t cct = udpIn[38]; if (udpIn[37] > 0) { //Kelvin cct |= (udpIn[37] << 8); } strip.setCCT(cct); } } } bool timebaseUpdated = false; //apply effects from notification bool applyEffects = (receiveNotificationEffects || !someSel); if (version < 200) { if (applyEffects && currentPlaylist >= 0) unloadPlaylist(); if (version > 10 && (receiveSegmentOptions || receiveSegmentBounds)) { uint8_t numSrcSegs = udpIn[39]; for (size_t i = 0; i < numSrcSegs; i++) { uint16_t ofs = 41 + i*udpIn[40]; //start of segment offset byte uint8_t id = udpIn[0 +ofs]; if (id > strip.getSegmentsNum()) break; Segment& selseg = strip.getSegment(id); if (!selseg.isActive() || !selseg.isSelected()) continue; //do not apply to non selected segments uint16_t startY = 0, start = (udpIn[1+ofs] << 8 | udpIn[2+ofs]); uint16_t stopY = 1, stop = (udpIn[3+ofs] << 8 | udpIn[4+ofs]); uint16_t offset = (udpIn[7+ofs] << 8 | udpIn[8+ofs]); if (!receiveSegmentOptions) { selseg.setUp(start, stop, selseg.grouping, selseg.spacing, offset, startY, stopY); continue; } //for (size_t j = 1; j<4; j++) selseg.setOption(j, (udpIn[9 +ofs] >> j) & 0x01); //only take into account mirrored, on, reversed; ignore selected selseg.options = (selseg.options & 0x0071U) | (udpIn[9 +ofs] & 0x0E); // ignore selected, freeze, reset & transitional selseg.setOpacity(udpIn[10+ofs]); if (applyEffects) { strip.setMode(id, udpIn[11+ofs]); selseg.speed = udpIn[12+ofs]; selseg.intensity = udpIn[13+ofs]; selseg.palette = udpIn[14+ofs]; } if (receiveNotificationColor || !someSel) { selseg.setColor(0, RGBW32(udpIn[15+ofs],udpIn[16+ofs],udpIn[17+ofs],udpIn[18+ofs])); selseg.setColor(1, RGBW32(udpIn[19+ofs],udpIn[20+ofs],udpIn[21+ofs],udpIn[22+ofs])); selseg.setColor(2, RGBW32(udpIn[23+ofs],udpIn[24+ofs],udpIn[25+ofs],udpIn[26+ofs])); selseg.setCCT(udpIn[27+ofs]); } if (version > 11) { // when applying synced options ignore selected as it may be used as indicator of which segments to sync // freeze, reset & transitional should never be synced selseg.options = (selseg.options & 0x0071U) | (udpIn[28+ofs]<<8) | (udpIn[9 +ofs] & 0x8E); // ignore selected, freeze, reset & transitional if (applyEffects) { selseg.custom1 = udpIn[29+ofs]; selseg.custom2 = udpIn[30+ofs]; selseg.custom3 = udpIn[31+ofs] & 0x1F; selseg.check1 = (udpIn[31+ofs]>>5) & 0x1; selseg.check1 = (udpIn[31+ofs]>>6) & 0x1; selseg.check1 = (udpIn[31+ofs]>>7) & 0x1; } startY = (udpIn[32+ofs] << 8 | udpIn[33+ofs]); stopY = (udpIn[34+ofs] << 8 | udpIn[35+ofs]); } if (receiveSegmentBounds) { selseg.setUp(start, stop, udpIn[5+ofs], udpIn[6+ofs], offset, startY, stopY); } else { selseg.setUp(selseg.start, selseg.stop, udpIn[5+ofs], udpIn[6+ofs], selseg.offset, selseg.startY, selseg.stopY); } } stateChanged = true; } // simple effect sync, applies to all selected segments if (applyEffects && (version < 11 || !receiveSegmentOptions)) { for (size_t i = 0; i < strip.getSegmentsNum(); i++) { Segment& seg = strip.getSegment(i); if (!seg.isActive() || !seg.isSelected()) continue; seg.setMode(udpIn[8]); seg.speed = udpIn[9]; if (version > 2) seg.intensity = udpIn[16]; if (version > 4) seg.setPalette(udpIn[19]); } stateChanged = true; } if (applyEffects && version > 5) { uint32_t t = (udpIn[25] << 24) | (udpIn[26] << 16) | (udpIn[27] << 8) | (udpIn[28]); t += PRESUMED_NETWORK_DELAY; //adjust trivially for network delay t -= millis(); strip.timebase = t; timebaseUpdated = true; } } //adjust system time, but only if sender is more accurate than self if (version > 7 && version < 200) { Toki::Time tm; tm.sec = (udpIn[30] << 24) | (udpIn[31] << 16) | (udpIn[32] << 8) | (udpIn[33]); tm.ms = (udpIn[34] << 8) | (udpIn[35]); if (udpIn[29] > toki.getTimeSource()) { //if sender's time source is more accurate toki.adjust(tm, PRESUMED_NETWORK_DELAY); //adjust trivially for network delay uint8_t ts = TOKI_TS_UDP; if (udpIn[29] > 99) ts = TOKI_TS_UDP_NTP; else if (udpIn[29] >= TOKI_TS_SEC) ts = TOKI_TS_UDP_SEC; toki.setTime(tm, ts); } else if (timebaseUpdated && toki.getTimeSource() > 99) { //if we both have good times, get a more accurate timebase Toki::Time myTime = toki.getTime(); uint32_t diff = toki.msDifference(tm, myTime); strip.timebase -= PRESUMED_NETWORK_DELAY; //no need to presume, use difference between NTP times at send and receive points if (toki.isLater(tm, myTime)) { strip.timebase += diff; } else { strip.timebase -= diff; } } } if (version > 3) { transitionDelayTemp = ((udpIn[17] << 0) & 0xFF) + ((udpIn[18] << 8) & 0xFF00); } nightlightActive = udpIn[6]; if (nightlightActive) nightlightDelayMins = udpIn[7]; if (receiveNotificationBrightness || !someSel) bri = udpIn[2]; stateUpdated(CALL_MODE_NOTIFICATION); return; } if (!receiveDirect) return; //TPM2.NET if (udpIn[0] == 0x9c) { //WARNING: this code assumes that the final TMP2.NET payload is evenly distributed if using multiple packets (ie. frame size is constant) //if the number of LEDs in your installation doesn't allow that, please include padding bytes at the end of the last packet byte tpmType = udpIn[1]; if (tpmType == 0xaa) { //TPM2.NET polling, expect answer sendTPM2Ack(); return; } if (tpmType != 0xda) return; //return if notTPM2.NET data realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP(); realtimeLock(realtimeTimeoutMs, REALTIME_MODE_TPM2NET); if (realtimeOverride && !(realtimeMode && useMainSegmentOnly)) return; tpmPacketCount++; //increment the packet count if (tpmPacketCount == 1) tpmPayloadFrameSize = (udpIn[2] << 8) + udpIn[3]; //save frame size for the whole payload if this is the first packet byte packetNum = udpIn[4]; //starts with 1! byte numPackets = udpIn[5]; uint16_t id = (tpmPayloadFrameSize/3)*(packetNum-1); //start LED uint16_t totalLen = strip.getLengthTotal(); for (size_t i = 6; i < tpmPayloadFrameSize + 4U; i += 3) { if (id < totalLen) { setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0); id++; } else break; } if (tpmPacketCount == numPackets) //reset packet count and show if all packets were received { tpmPacketCount = 0; strip.show(); } return; } //UDP realtime: 1 warls 2 drgb 3 drgbw if (udpIn[0] > 0 && udpIn[0] < 5) { realtimeIP = (isSupp) ? notifier2Udp.remoteIP() : notifierUdp.remoteIP(); DEBUG_PRINTLN(realtimeIP); if (packetSize < 2) return; if (udpIn[1] == 0) { realtimeTimeout = 0; return; } else { realtimeLock(udpIn[1]*1000 +1, REALTIME_MODE_UDP); } if (realtimeOverride && !(realtimeMode && useMainSegmentOnly)) return; uint16_t totalLen = strip.getLengthTotal(); if (udpIn[0] == 1) //warls { for (size_t i = 2; i < packetSize -3; i += 4) { setRealtimePixel(udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3], 0); } } else if (udpIn[0] == 2) //drgb { uint16_t id = 0; for (size_t i = 2; i < packetSize -2; i += 3) { setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0); id++; if (id >= totalLen) break; } } else if (udpIn[0] == 3) //drgbw { uint16_t id = 0; for (size_t i = 2; i < packetSize -3; i += 4) { setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]); id++; if (id >= totalLen) break; } } else if (udpIn[0] == 4) //dnrgb { uint16_t id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00); for (size_t i = 4; i < packetSize -2; i += 3) { if (id >= totalLen) break; setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], 0); id++; } } else if (udpIn[0] == 5) //dnrgbw { uint16_t id = ((udpIn[3] << 0) & 0xFF) + ((udpIn[2] << 8) & 0xFF00); for (size_t i = 4; i < packetSize -2; i += 4) { if (id >= totalLen) break; setRealtimePixel(id, udpIn[i], udpIn[i+1], udpIn[i+2], udpIn[i+3]); id++; } } strip.show(); return; } // API over UDP udpIn[packetSize] = '\0'; if (requestJSONBufferLock(18)) { if (udpIn[0] >= 'A' && udpIn[0] <= 'Z') { //HTTP API String apireq = "win"; apireq += '&'; // reduce flash string usage apireq += (char*)udpIn; handleSet(nullptr, apireq); } else if (udpIn[0] == '{') { //JSON API DeserializationError error = deserializeJson(doc, udpIn); JsonObject root = doc.as(); if (!error && !root.isNull()) deserializeState(root); } releaseJSONBufferLock(); } } void setRealtimePixel(uint16_t i, byte r, byte g, byte b, byte w) { uint16_t pix = i + arlsOffset; if (pix < strip.getLengthTotal()) { if (!arlsDisableGammaCorrection && gammaCorrectCol) { r = gamma8(r); g = gamma8(g); b = gamma8(b); w = gamma8(w); } if (useMainSegmentOnly) { Segment &seg = strip.getMainSegment(); if (pixsecond.ip[0] != 0) { if (it->second.age < 10) { it->second.age++; mustRemove = false; ++it; } } if (mustRemove) { it = Nodes.erase(it); } } } /*********************************************************************************************\ Broadcast system info to other nodes. (to update node lists) \*********************************************************************************************/ void sendSysInfoUDP() { if (!udp2Connected) return; IPAddress ip = Network.localIP(); if (!ip || ip == IPAddress(255,255,255,255)) ip = IPAddress(4,3,2,1); // TODO: make a nice struct of it and clean up // 0: 1 byte 'binary token 255' // 1: 1 byte id '1' // 2: 4 byte ip // 6: 32 char name // 38: 1 byte node type id // 39: 1 byte node id // 40: 4 byte version ID // 44 bytes total // send my info to the world... uint8_t data[44] = {0}; data[0] = 255; data[1] = 1; for (size_t x = 0; x < 4; x++) { data[x + 2] = ip[x]; } memcpy((byte *)data + 6, serverDescription, 32); #ifdef ESP8266 data[38] = NODE_TYPE_ID_ESP8266; #elif defined(CONFIG_IDF_TARGET_ESP32C3) data[38] = NODE_TYPE_ID_ESP32C3; #elif defined(CONFIG_IDF_TARGET_ESP32S3) data[38] = NODE_TYPE_ID_ESP32S3; #elif defined(CONFIG_IDF_TARGET_ESP32S2) data[38] = NODE_TYPE_ID_ESP32S2; #elif defined(ARDUINO_ARCH_ESP32) data[38] = NODE_TYPE_ID_ESP32; #else data[38] = NODE_TYPE_ID_UNDEFINED; #endif data[39] = ip[3]; // unit ID == last IP number uint32_t build = VERSION; for (size_t i=0; i>(8*i)) & 0xFF; IPAddress broadcastIP(255, 255, 255, 255); notifier2Udp.beginPacket(broadcastIP, udpPort2); notifier2Udp.write(data, sizeof(data)); notifier2Udp.endPacket(); } /*********************************************************************************************\ * Art-Net, DDP, E131 output - work in progress \*********************************************************************************************/ #define DDP_HEADER_LEN 10 #define DDP_SYNCPACKET_LEN 10 #define DDP_FLAGS1_VER 0xc0 // version mask #define DDP_FLAGS1_VER1 0x40 // version=1 #define DDP_FLAGS1_PUSH 0x01 #define DDP_FLAGS1_QUERY 0x02 #define DDP_FLAGS1_REPLY 0x04 #define DDP_FLAGS1_STORAGE 0x08 #define DDP_FLAGS1_TIME 0x10 #define DDP_ID_DISPLAY 1 #define DDP_ID_CONFIG 250 #define DDP_ID_STATUS 251 // 1440 channels per packet #define DDP_CHANNELS_PER_PACKET 1440 // 480 leds // // Send real time UDP updates to the specified client // // type - protocol type (0=DDP, 1=E1.31, 2=ArtNet) // client - the IP address to send to // length - the number of pixels // buffer - a buffer of at least length*4 bytes long // isRGBW - true if the buffer contains 4 components per pixel static size_t sequenceNumber = 0; // this needs to be shared across all outputs static const size_t ART_NET_HEADER_SIZE = 12; static const byte ART_NET_HEADER[] PROGMEM = {0x41,0x72,0x74,0x2d,0x4e,0x65,0x74,0x00,0x00,0x50,0x00,0x0e}; uint8_t realtimeBroadcast(uint8_t type, IPAddress client, uint16_t length, uint8_t *buffer, uint8_t bri, bool isRGBW) { if (!(apActive || interfacesInited) || !client[0] || !length) return 1; // network not initialised or dummy/unset IP address 031522 ajn added check for ap WiFiUDP ddpUdp; switch (type) { case 0: // DDP { // calculate the number of UDP packets we need to send size_t channelCount = length * (isRGBW? 4:3); // 1 channel for every R,G,B value size_t packetCount = ((channelCount-1) / DDP_CHANNELS_PER_PACKET) +1; // there are 3 channels per RGB pixel uint32_t channel = 0; // TODO: allow specifying the start channel // the current position in the buffer size_t bufferOffset = 0; for (size_t currentPacket = 0; currentPacket < packetCount; currentPacket++) { if (sequenceNumber > 15) sequenceNumber = 0; if (!ddpUdp.beginPacket(client, DDP_DEFAULT_PORT)) { // port defined in ESPAsyncE131.h DEBUG_PRINTLN(F("WiFiUDP.beginPacket returned an error")); return 1; // problem } // the amount of data is AFTER the header in the current packet size_t packetSize = DDP_CHANNELS_PER_PACKET; uint8_t flags = DDP_FLAGS1_VER1; if (currentPacket == (packetCount - 1U)) { // last packet, set the push flag // TODO: determine if we want to send an empty push packet to each destination after sending the pixel data flags = DDP_FLAGS1_VER1 | DDP_FLAGS1_PUSH; if (channelCount % DDP_CHANNELS_PER_PACKET) { packetSize = channelCount % DDP_CHANNELS_PER_PACKET; } } // write the header /*0*/ddpUdp.write(flags); /*1*/ddpUdp.write(sequenceNumber++ & 0x0F); // sequence may be unnecessary unless we are sending twice (as requested in Sync settings) /*2*/ddpUdp.write(isRGBW ? DDP_TYPE_RGBW32 : DDP_TYPE_RGB24); /*3*/ddpUdp.write(DDP_ID_DISPLAY); // data offset in bytes, 32-bit number, MSB first /*4*/ddpUdp.write(0xFF & (channel >> 24)); /*5*/ddpUdp.write(0xFF & (channel >> 16)); /*6*/ddpUdp.write(0xFF & (channel >> 8)); /*7*/ddpUdp.write(0xFF & (channel )); // data length in bytes, 16-bit number, MSB first /*8*/ddpUdp.write(0xFF & (packetSize >> 8)); /*9*/ddpUdp.write(0xFF & (packetSize )); // write the colors, the write write(const uint8_t *buffer, size_t size) // function is just a loop internally too for (size_t i = 0; i < packetSize; i += (isRGBW?4:3)) { ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // R ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // G ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // B if (isRGBW) ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // W } if (!ddpUdp.endPacket()) { DEBUG_PRINTLN(F("WiFiUDP.endPacket returned an error")); return 1; // problem } channel += packetSize; } } break; case 1: //E1.31 { } break; case 2: //ArtNet { // calculate the number of UDP packets we need to send const size_t channelCount = length * (isRGBW?4:3); // 1 channel for every R,G,B,(W?) value const size_t ARTNET_CHANNELS_PER_PACKET = isRGBW?512:510; // 512/4=128 RGBW LEDs, 510/3=170 RGB LEDs const size_t packetCount = ((channelCount-1)/ARTNET_CHANNELS_PER_PACKET)+1; uint32_t channel = 0; size_t bufferOffset = 0; sequenceNumber++; for (size_t currentPacket = 0; currentPacket < packetCount; currentPacket++) { if (sequenceNumber > 255) sequenceNumber = 0; if (!ddpUdp.beginPacket(client, ARTNET_DEFAULT_PORT)) { DEBUG_PRINTLN(F("Art-Net WiFiUDP.beginPacket returned an error")); return 1; // borked } size_t packetSize = ARTNET_CHANNELS_PER_PACKET; if (currentPacket == (packetCount - 1U)) { // last packet if (channelCount % ARTNET_CHANNELS_PER_PACKET) { packetSize = channelCount % ARTNET_CHANNELS_PER_PACKET; } } byte header_buffer[ART_NET_HEADER_SIZE]; memcpy_P(header_buffer, ART_NET_HEADER, ART_NET_HEADER_SIZE); ddpUdp.write(header_buffer, ART_NET_HEADER_SIZE); // This doesn't change. Hard coded ID, OpCode, and protocol version. ddpUdp.write(sequenceNumber & 0xFF); // sequence number. 1..255 ddpUdp.write(0x00); // physical - more an FYI, not really used for anything. 0..3 ddpUdp.write((currentPacket) & 0xFF); // Universe LSB. 1 full packet == 1 full universe, so just use current packet number. ddpUdp.write(0x00); // Universe MSB, unused. ddpUdp.write(0xFF & (packetSize >> 8)); // 16-bit length of channel data, MSB ddpUdp.write(0xFF & (packetSize )); // 16-bit length of channel data, LSB for (size_t i = 0; i < packetSize; i += (isRGBW?4:3)) { ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // R ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // G ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // B if (isRGBW) ddpUdp.write(scale8(buffer[bufferOffset++], bri)); // W } if (!ddpUdp.endPacket()) { DEBUG_PRINTLN(F("Art-Net WiFiUDP.endPacket returned an error")); return 1; // borked } channel += packetSize; } } break; } return 0; }