#include "wled.h" /* * Physical IO */ #define WLED_DEBOUNCE_THRESHOLD 50 // only consider button input of at least 50ms as valid (debouncing) #define WLED_LONG_PRESS 600 // long press if button is released after held for at least 600ms #define WLED_DOUBLE_PRESS 350 // double press if another press within 350ms after a short press #define WLED_LONG_REPEATED_ACTION 300 // how often a repeated action (e.g. dimming) is fired on long press on button IDs >0 #define WLED_LONG_AP 5000 // how long button 0 needs to be held to activate WLED-AP #define WLED_LONG_FACTORY_RESET 10000 // how long button 0 needs to be held to trigger a factory reset static const char _mqtt_topic_button[] PROGMEM = "%s/button/%d"; // optimize flash usage void shortPressAction(uint8_t b) { if (!macroButton[b]) { switch (b) { case 0: toggleOnOff(); stateUpdated(CALL_MODE_BUTTON); break; case 1: ++effectCurrent %= strip.getModeCount(); stateChanged = true; colorUpdated(CALL_MODE_BUTTON); break; } } else { applyPreset(macroButton[b], CALL_MODE_BUTTON_PRESET); } #ifndef WLED_DISABLE_MQTT // publish MQTT message if (buttonPublishMqtt && WLED_MQTT_CONNECTED) { char subuf[64]; sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b); mqtt->publish(subuf, 0, false, "short"); } #endif } void longPressAction(uint8_t b) { if (!macroLongPress[b]) { switch (b) { case 0: setRandomColor(col); colorUpdated(CALL_MODE_BUTTON); break; case 1: bri += 8; stateUpdated(CALL_MODE_BUTTON); buttonPressedTime[b] = millis(); break; // repeatable action } } else { applyPreset(macroLongPress[b], CALL_MODE_BUTTON_PRESET); } #ifndef WLED_DISABLE_MQTT // publish MQTT message if (buttonPublishMqtt && WLED_MQTT_CONNECTED) { char subuf[64]; sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b); mqtt->publish(subuf, 0, false, "long"); } #endif } void doublePressAction(uint8_t b) { if (!macroDoublePress[b]) { switch (b) { //case 0: toggleOnOff(); colorUpdated(CALL_MODE_BUTTON); break; //instant short press on button 0 if no macro set case 1: ++effectPalette %= strip.getPaletteCount(); colorUpdated(CALL_MODE_BUTTON); break; } } else { applyPreset(macroDoublePress[b], CALL_MODE_BUTTON_PRESET); } #ifndef WLED_DISABLE_MQTT // publish MQTT message if (buttonPublishMqtt && WLED_MQTT_CONNECTED) { char subuf[64]; sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b); mqtt->publish(subuf, 0, false, "double"); } #endif } bool isButtonPressed(uint8_t i) { if (btnPin[i]<0) return false; uint8_t pin = btnPin[i]; switch (buttonType[i]) { case BTN_TYPE_NONE: case BTN_TYPE_RESERVED: break; case BTN_TYPE_PUSH: case BTN_TYPE_SWITCH: if (digitalRead(pin) == LOW) return true; break; case BTN_TYPE_PUSH_ACT_HIGH: case BTN_TYPE_PIR_SENSOR: if (digitalRead(pin) == HIGH) return true; break; case BTN_TYPE_TOUCH: #if defined(ARDUINO_ARCH_ESP32) && !defined(CONFIG_IDF_TARGET_ESP32C3) if (touchRead(pin) <= touchThreshold) return true; #endif break; } return false; } void handleSwitch(uint8_t b) { // isButtonPressed() handles inverted/noninverted logic if (buttonPressedBefore[b] != isButtonPressed(b)) { buttonPressedTime[b] = millis(); buttonPressedBefore[b] = !buttonPressedBefore[b]; } if (buttonLongPressed[b] == buttonPressedBefore[b]) return; if (millis() - buttonPressedTime[b] > WLED_DEBOUNCE_THRESHOLD) { //fire edge event only after 50ms without change (debounce) if (!buttonPressedBefore[b]) { // on -> off if (macroButton[b]) applyPreset(macroButton[b], CALL_MODE_BUTTON_PRESET); else { //turn on if (!bri) {toggleOnOff(); stateUpdated(CALL_MODE_BUTTON);} } } else { // off -> on if (macroLongPress[b]) applyPreset(macroLongPress[b], CALL_MODE_BUTTON_PRESET); else { //turn off if (bri) {toggleOnOff(); stateUpdated(CALL_MODE_BUTTON);} } } #ifndef WLED_DISABLE_MQTT // publish MQTT message if (buttonPublishMqtt && WLED_MQTT_CONNECTED) { char subuf[64]; if (buttonType[b] == BTN_TYPE_PIR_SENSOR) sprintf_P(subuf, PSTR("%s/motion/%d"), mqttDeviceTopic, (int)b); else sprintf_P(subuf, _mqtt_topic_button, mqttDeviceTopic, (int)b); mqtt->publish(subuf, 0, false, !buttonPressedBefore[b] ? "off" : "on"); } #endif buttonLongPressed[b] = buttonPressedBefore[b]; //save the last "long term" switch state } } #define ANALOG_BTN_READ_CYCLE 250 // min time between two analog reading cycles #define STRIP_WAIT_TIME 6 // max wait time in case of strip.isUpdating() #define POT_SMOOTHING 0.25f // smoothing factor for raw potentiometer readings #define POT_SENSITIVITY 4 // changes below this amount are noise (POT scratching, or ADC noise) void handleAnalog(uint8_t b) { static uint8_t oldRead[WLED_MAX_BUTTONS] = {0}; static float filteredReading[WLED_MAX_BUTTONS] = {0.0f}; uint16_t rawReading; // raw value from analogRead, scaled to 12bit #ifdef ESP8266 rawReading = analogRead(A0) << 2; // convert 10bit read to 12bit #else rawReading = analogRead(btnPin[b]); // collect at full 12bit resolution #endif yield(); // keep WiFi task running - analog read may take several millis on ESP8266 filteredReading[b] += POT_SMOOTHING * ((float(rawReading) / 16.0f) - filteredReading[b]); // filter raw input, and scale to [0..255] uint16_t aRead = max(min(int(filteredReading[b]), 255), 0); // squash into 8bit if(aRead <= POT_SENSITIVITY) aRead = 0; // make sure that 0 and 255 are used if(aRead >= 255-POT_SENSITIVITY) aRead = 255; if (buttonType[b] == BTN_TYPE_ANALOG_INVERTED) aRead = 255 - aRead; // remove noise & reduce frequency of UI updates if (abs(int(aRead) - int(oldRead[b])) <= POT_SENSITIVITY) return; // no significant change in reading // Unomment the next lines if you still see flickering related to potentiometer // This waits until strip finishes updating (why: strip was not updating at the start of handleButton() but may have started during analogRead()?) //unsigned long wait_started = millis(); //while(strip.isUpdating() && (millis() - wait_started < STRIP_WAIT_TIME)) { // delay(1); //} //if (strip.isUpdating()) return; // give up oldRead[b] = aRead; // if no macro for "short press" and "long press" is defined use brightness control if (!macroButton[b] && !macroLongPress[b]) { // if "double press" macro defines which option to change if (macroDoublePress[b] >= 250) { // global brightness if (aRead == 0) { briLast = bri; bri = 0; } else{ bri = aRead; } } else if (macroDoublePress[b] == 249) { // effect speed effectSpeed = aRead; } else if (macroDoublePress[b] == 248) { // effect intensity effectIntensity = aRead; } else if (macroDoublePress[b] == 247) { // selected palette effectPalette = map(aRead, 0, 252, 0, strip.getPaletteCount()-1); effectPalette = constrain(effectPalette, 0, strip.getPaletteCount()-1); // map is allowed to "overshoot", so we need to contrain the result } else if (macroDoublePress[b] == 200) { // primary color, hue, full saturation colorHStoRGB(aRead*256,255,col); } else { // otherwise use "double press" for segment selection Segment& seg = strip.getSegment(macroDoublePress[b]); if (aRead == 0) { seg.setOption(SEG_OPTION_ON, false); // off (use transition) } else { seg.setOpacity(aRead); seg.setOption(SEG_OPTION_ON, true); // on (use transition) } // this will notify clients of update (websockets,mqtt,etc) updateInterfaces(CALL_MODE_BUTTON); } } else { //TODO: // we can either trigger a preset depending on the level (between short and long entries) // or use it for RGBW direct control } colorUpdated(CALL_MODE_BUTTON); } void handleButton() { static unsigned long lastRead = 0UL; static unsigned long lastRun = 0UL; unsigned long now = millis(); //if (strip.isUpdating()) return; // don't interfere with strip updates. Our button will still be there in 1ms (next cycle) if (strip.isUpdating() && (millis() - lastRun < 400)) return; // be niced, but avoid button starvation lastRun = millis(); for (uint8_t b=0; b ANALOG_BTN_READ_CYCLE) { handleAnalog(b); lastRead = now; } continue; } //button is not momentary, but switch. This is only suitable on pins whose on-boot state does not matter (NOT gpio0) if (buttonType[b] == BTN_TYPE_SWITCH || buttonType[b] == BTN_TYPE_PIR_SENSOR) { handleSwitch(b); continue; } //momentary button logic if (isButtonPressed(b)) { //pressed if (!buttonPressedBefore[b]) buttonPressedTime[b] = now; buttonPressedBefore[b] = true; if (now - buttonPressedTime[b] > WLED_LONG_PRESS) { //long press if (!buttonLongPressed[b]) longPressAction(b); else if (b) { //repeatable action (~3 times per s) on button > 0 longPressAction(b); buttonPressedTime[b] = now - WLED_LONG_REPEATED_ACTION; //333ms } buttonLongPressed[b] = true; } } else if (!isButtonPressed(b) && buttonPressedBefore[b]) { //released long dur = now - buttonPressedTime[b]; if (dur < WLED_DEBOUNCE_THRESHOLD) {buttonPressedBefore[b] = false; continue;} //too short "press", debounce bool doublePress = buttonWaitTime[b]; //did we have a short press before? buttonWaitTime[b] = 0; if (b == 0 && dur > WLED_LONG_AP) { // long press on button 0 (when released) if (dur > WLED_LONG_FACTORY_RESET) { // factory reset if pressed > 10 seconds WLED_FS.format(); #ifdef WLED_ADD_EEPROM_SUPPORT clearEEPROM(); #endif doReboot = true; } else { WLED::instance().initAP(true); } } else if (!buttonLongPressed[b]) { //short press //NOTE: this interferes with double click handling in usermods so usermod needs to implement full button handling if (b != 1 && !macroDoublePress[b]) { //don't wait for double press on buttons without a default action if no double press macro set shortPressAction(b); } else { //double press if less than 350 ms between current press and previous short press release (buttonWaitTime!=0) if (doublePress) { doublePressAction(b); } else { buttonWaitTime[b] = now; } } } buttonPressedBefore[b] = false; buttonLongPressed[b] = false; } //if 350ms elapsed since last short press release it is a short press if (buttonWaitTime[b] && now - buttonWaitTime[b] > WLED_DOUBLE_PRESS && !buttonPressedBefore[b]) { buttonWaitTime[b] = 0; shortPressAction(b); } } } // If enabled, RMT idle level is set to HIGH when off // to prevent leakage current when using an N-channel MOSFET to toggle LED power #ifdef ESP32_DATA_IDLE_HIGH void esp32RMTInvertIdle() { bool idle_out; for (uint8_t u = 0; u < busses.getNumBusses(); u++) { if (u > 7) return; // only 8 RMT channels, TODO: ESP32 variants have less RMT channels Bus *bus = busses.getBus(u); if (!bus || bus->getLength()==0 || !IS_DIGITAL(bus->getType()) || IS_2PIN(bus->getType())) continue; //assumes that bus number to rmt channel mapping stays 1:1 rmt_channel_t ch = static_cast(u); rmt_idle_level_t lvl; rmt_get_idle_level(ch, &idle_out, &lvl); if (lvl == RMT_IDLE_LEVEL_HIGH) lvl = RMT_IDLE_LEVEL_LOW; else if (lvl == RMT_IDLE_LEVEL_LOW) lvl = RMT_IDLE_LEVEL_HIGH; else continue; rmt_set_idle_level(ch, idle_out, lvl); } } #endif void handleIO() { handleButton(); //set relay when LEDs turn on if (strip.getBrightness()) { lastOnTime = millis(); if (offMode) { #ifdef ESP32_DATA_IDLE_HIGH esp32RMTInvertIdle(); #endif if (rlyPin>=0) { pinMode(rlyPin, OUTPUT); digitalWrite(rlyPin, rlyMde); } offMode = false; } } else if (millis() - lastOnTime > 600) { if (!offMode) { #ifdef ESP8266 // turn off built-in LED if strip is turned off // this will break digital bus so will need to be reinitialised on On PinOwner ledPinOwner = pinManager.getPinOwner(LED_BUILTIN); if (!strip.isOffRefreshRequired() && (ledPinOwner == PinOwner::None || ledPinOwner == PinOwner::BusDigital)) { pinMode(LED_BUILTIN, OUTPUT); digitalWrite(LED_BUILTIN, HIGH); } #endif #ifdef ESP32_DATA_IDLE_HIGH esp32RMTInvertIdle(); #endif if (rlyPin>=0) { pinMode(rlyPin, OUTPUT); digitalWrite(rlyPin, !rlyMde); } } offMode = true; } }