kopia lustrzana https://github.com/Aircoookie/WLED
				
				
				
			Switch trigonometric implementation, saves 460b memory
							rodzic
							
								
									5751d5c1b0
								
							
						
					
					
						commit
						f3b84f1365
					
				| 
						 | 
				
			
			@ -2,6 +2,10 @@
 | 
			
		|||
 | 
			
		||||
### Builds after release 0.12.0
 | 
			
		||||
 | 
			
		||||
#### Build 2104141
 | 
			
		||||
 | 
			
		||||
-   Reduced memory usage by 540b by switching to a different trigonometric approximation
 | 
			
		||||
 | 
			
		||||
#### Build 2104140
 | 
			
		||||
 | 
			
		||||
-   Added dynamic location-based Sunrise/Sunset macros (PR #1889)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -1,5 +1,6 @@
 | 
			
		|||
#include "src/dependencies/timezone/Timezone.h"
 | 
			
		||||
#include "wled.h"
 | 
			
		||||
#include "wled_math.h"
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Acquires time from NTP server
 | 
			
		||||
| 
						 | 
				
			
			@ -316,8 +317,8 @@ void checkTimers()
 | 
			
		|||
// get sunrise (or sunset) time (in minutes) for a given day at a given geo location
 | 
			
		||||
int getSunriseUTC(int year, int month, int day, float lat, float lon, bool sunset=false) {
 | 
			
		||||
  //1. first calculate the day of the year
 | 
			
		||||
  float N1 = floor(275 * month / 9);
 | 
			
		||||
  float N2 = floor((month + 9) / 12);
 | 
			
		||||
  float N1 = 275 * month / 9;
 | 
			
		||||
  float N2 = (month + 9) / 12;
 | 
			
		||||
  float N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3));
 | 
			
		||||
  float N = N1 - (N2 * N3) + day - 30;
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -329,10 +330,10 @@ int getSunriseUTC(int year, int month, int day, float lat, float lon, bool sunse
 | 
			
		|||
  float M = (0.9856 * t) - 3.289;
 | 
			
		||||
 | 
			
		||||
  //4. calculate the Sun's true longitude
 | 
			
		||||
  float L = fmod(M + (1.916 * sin(DEG_TO_RAD*M)) + (0.020 * sin(2*DEG_TO_RAD*M)) + 282.634, 360.0);
 | 
			
		||||
  float L = fmod(M + (1.916 * sin_t(DEG_TO_RAD*M)) + (0.020 * sin_t(2*DEG_TO_RAD*M)) + 282.634, 360.0);
 | 
			
		||||
 | 
			
		||||
  //5a. calculate the Sun's right ascension      
 | 
			
		||||
  float RA = fmod(RAD_TO_DEG*atan(0.91764 * tan(DEG_TO_RAD*L)), 360.0);
 | 
			
		||||
  float RA = fmod(RAD_TO_DEG*atan_t(0.91764 * tan_t(DEG_TO_RAD*L)), 360.0);
 | 
			
		||||
 | 
			
		||||
  //5b. right ascension value needs to be in the same quadrant as L   
 | 
			
		||||
  float Lquadrant  = floor( L/90) * 90;
 | 
			
		||||
| 
						 | 
				
			
			@ -343,16 +344,16 @@ int getSunriseUTC(int year, int month, int day, float lat, float lon, bool sunse
 | 
			
		|||
  RA /= 15.;
 | 
			
		||||
 | 
			
		||||
  //6. calculate the Sun's declination
 | 
			
		||||
  float sinDec = 0.39782 * sin(DEG_TO_RAD*L);
 | 
			
		||||
  float cosDec = cos(asin(sinDec));
 | 
			
		||||
  float sinDec = 0.39782 * sin_t(DEG_TO_RAD*L);
 | 
			
		||||
  float cosDec = cos_t(asin_t(sinDec));
 | 
			
		||||
 | 
			
		||||
  //7a. calculate the Sun's local hour angle
 | 
			
		||||
  float cosH = (sin(DEG_TO_RAD*ZENITH) - (sinDec * sin(DEG_TO_RAD*lat))) / (cosDec * cos(DEG_TO_RAD*lat));
 | 
			
		||||
  float cosH = (sin_t(DEG_TO_RAD*ZENITH) - (sinDec * sin_t(DEG_TO_RAD*lat))) / (cosDec * cos_t(DEG_TO_RAD*lat));
 | 
			
		||||
  if (cosH > 1 && !sunset) return 0;  // the sun never rises on this location (on the specified date)
 | 
			
		||||
  if (cosH < -1 && sunset) return 0;  // the sun never sets on this location (on the specified date)
 | 
			
		||||
 | 
			
		||||
  //7b. finish calculating H and convert into hours
 | 
			
		||||
  float H = sunset ? RAD_TO_DEG*acos(cosH) : 360 - RAD_TO_DEG*acos(cosH);
 | 
			
		||||
  float H = sunset ? RAD_TO_DEG*acos_t(cosH) : 360 - RAD_TO_DEG*acos_t(cosH);
 | 
			
		||||
  H /= 15.;
 | 
			
		||||
 | 
			
		||||
  //8. calculate local mean time of rising/setting      
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -8,7 +8,7 @@
 | 
			
		|||
 */
 | 
			
		||||
 | 
			
		||||
// version code in format yymmddb (b = daily build)
 | 
			
		||||
#define VERSION 2104140
 | 
			
		||||
#define VERSION 2104141
 | 
			
		||||
 | 
			
		||||
//uncomment this if you have a "my_config.h" file you'd like to use
 | 
			
		||||
//#define WLED_USE_MY_CONFIG
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,71 @@
 | 
			
		|||
#ifndef WLED_MATH_H
 | 
			
		||||
#define WLED_MATH_H
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
 * Contains some trigonometric functions.
 | 
			
		||||
 * The ANSI C equivalents are likely faster, but using any sin/cos/tan function incurs a memory penalty of 460 bytes on ESP8266, likely for lookup tables.
 | 
			
		||||
 * This implementation has no extra static memory usage.
 | 
			
		||||
 * 
 | 
			
		||||
 * Source of the cos_t() function: https://web.eecs.utk.edu/~azh/blog/cosine.html (cos_taylor_literal_6terms)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include <Arduino.h> //PI constant
 | 
			
		||||
 | 
			
		||||
#define modd(x, y) ((x) - (int)((x) / (y)) * (y))
 | 
			
		||||
 | 
			
		||||
double cos_t(double x)
 | 
			
		||||
{
 | 
			
		||||
  x = modd(x, TWO_PI);
 | 
			
		||||
  char sign = 1;
 | 
			
		||||
  if (x > PI)
 | 
			
		||||
  {
 | 
			
		||||
      x -= PI;
 | 
			
		||||
      sign = -1;
 | 
			
		||||
  }
 | 
			
		||||
  double xx = x * x;
 | 
			
		||||
 | 
			
		||||
  return sign * (1 - ((xx) / (2)) + ((xx * xx) / (24)) - ((xx * xx * xx) / (720)) + ((xx * xx * xx * xx) / (40320)) - ((xx * xx * xx * xx * xx) / (3628800)) + ((xx * xx * xx * xx * xx * xx) / (479001600)));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double sin_t(double x) {
 | 
			
		||||
  return cos_t(HALF_PI - x);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
double tan_t(double x) {
 | 
			
		||||
  double c = cos_t(x);
 | 
			
		||||
  if (c==0.0) return 0;
 | 
			
		||||
  return sin_t(x) / c;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//https://stackoverflow.com/questions/3380628
 | 
			
		||||
// Absolute error <= 6.7e-5
 | 
			
		||||
float acos_t(float x) {
 | 
			
		||||
  float negate = float(x < 0);
 | 
			
		||||
  x = std::abs(x);
 | 
			
		||||
  float ret = -0.0187293;
 | 
			
		||||
  ret = ret * x;
 | 
			
		||||
  ret = ret + 0.0742610;
 | 
			
		||||
  ret = ret * x;
 | 
			
		||||
  ret = ret - 0.2121144;
 | 
			
		||||
  ret = ret * x;
 | 
			
		||||
  ret = ret + HALF_PI;
 | 
			
		||||
  ret = ret * sqrt(1.0-x);
 | 
			
		||||
  ret = ret - 2 * negate * ret;
 | 
			
		||||
  return negate * PI + ret;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float asin_t(float x) {
 | 
			
		||||
  return HALF_PI - acos_t(x);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
//https://stackoverflow.com/a/42542593
 | 
			
		||||
#define A 0.0776509570923569
 | 
			
		||||
#define B -0.287434475393028
 | 
			
		||||
#define C ((HALF_PI/2) - A - B)
 | 
			
		||||
 | 
			
		||||
double atan_t(double x) {
 | 
			
		||||
  double xx = x * x;
 | 
			
		||||
  return ((A*xx + B)*xx + C)*x;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
		Ładowanie…
	
		Reference in New Issue