WLED/wled00/FX_2Dfcn.cpp

641 wiersze
25 KiB
C++
Czysty Zwykły widok Historia

/*
FX_2Dfcn.cpp contains all 2D utility functions
Copyright (c) 2022 Blaz Kristan (https://blaz.at/home)
Licensed under the EUPL v. 1.2 or later
Adapted from code originally licensed under the MIT license
Parts of the code adapted from WLED Sound Reactive
*/
#include "wled.h"
#include "palettes.h"
// setUpMatrix() - constructs ledmap array from matrix of panels with WxH pixels
// this converts physical (possibly irregular) LED arrangement into well defined
// array of logical pixels: fist entry corresponds to left-topmost logical pixel
// followed by horizontal pixels, when Segment::maxWidth logical pixels are added they
// are followed by next row (down) of Segment::maxWidth pixels (and so forth)
// note: matrix may be comprised of multiple panels each with different orientation
// but ledmap takes care of that. ledmap is constructed upon initialization
// so matrix should disable regular ledmap processing
void WS2812FX::setUpMatrix() {
#ifndef WLED_DISABLE_2D
// isMatrix is set in cfg.cpp or set.cpp
if (isMatrix) {
// calculate width dynamically because it may have gaps
Segment::maxWidth = 1;
Segment::maxHeight = 1;
for (const Panel &p : panel) {
if (p.xOffset + p.width > Segment::maxWidth) {
Segment::maxWidth = p.xOffset + p.width;
}
if (p.yOffset + p.height > Segment::maxHeight) {
Segment::maxHeight = p.yOffset + p.height;
}
}
// safety check
if (Segment::maxWidth * Segment::maxHeight > MAX_LEDS || Segment::maxWidth > 255 || Segment::maxHeight > 255 || Segment::maxWidth <= 1 || Segment::maxHeight <= 1) {
DEBUG_PRINTLN(F("2D Bounds error."));
isMatrix = false;
Segment::maxWidth = _length;
Segment::maxHeight = 1;
panel.clear(); // release memory allocated by panels
panel.shrink_to_fit(); // release memory if allocated
resetSegments();
return;
}
suspend();
waitForIt();
customMappingSize = 0; // prevent use of mapping if anything goes wrong
d_free(customMappingTable);
customMappingTable = static_cast<uint16_t*>(d_malloc(sizeof(uint16_t)*getLengthTotal())); // prefer to not use SPI RAM
2024-04-09 06:25:07 +00:00
if (customMappingTable) {
customMappingSize = getLengthTotal();
// fill with empty in case we don't fill the entire matrix
unsigned matrixSize = Segment::maxWidth * Segment::maxHeight;
for (unsigned i = 0; i<matrixSize; i++) customMappingTable[i] = 0xFFFFU;
for (unsigned i = matrixSize; i<getLengthTotal(); i++) customMappingTable[i] = i; // trailing LEDs for ledmap (after matrix) if it exist
// we will try to load a "gap" array (a JSON file)
// the array has to have the same amount of values as mapping array (or larger)
// "gap" array is used while building ledmap (mapping array)
// and discarded afterwards as it has no meaning after the process
// content of the file is just raw JSON array in the form of [val1,val2,val3,...]
// there are no other "key":"value" pairs in it
// allowed values are: -1 (missing pixel/no LED attached), 0 (inactive/unused pixel), 1 (active/used pixel)
char fileName[32]; strcpy_P(fileName, PSTR("/2d-gaps.json"));
bool isFile = WLED_FS.exists(fileName);
size_t gapSize = 0;
int8_t *gapTable = nullptr;
2023-02-09 19:15:55 +00:00
if (isFile && requestJSONBufferLock(20)) {
DEBUG_PRINT(F("Reading LED gap from "));
DEBUG_PRINTLN(fileName);
// read the array into global JSON buffer
if (readObjectFromFile(fileName, nullptr, pDoc)) {
2023-02-09 19:15:55 +00:00
// the array is similar to ledmap, except it has only 3 values:
// -1 ... missing pixel (do not increase pixel count)
// 0 ... inactive pixel (it does count, but should be mapped out (-1))
// 1 ... active pixel (it will count and will be mapped)
JsonArray map = pDoc->as<JsonArray>();
2023-02-09 19:15:55 +00:00
gapSize = map.size();
if (!map.isNull() && gapSize >= matrixSize) { // not an empty map
2025-04-26 18:08:15 +00:00
gapTable = static_cast<int8_t*>(p_malloc(gapSize));
if (gapTable) for (size_t i = 0; i < gapSize; i++) {
2023-02-09 19:15:55 +00:00
gapTable[i] = constrain(map[i], -1, 1);
}
}
}
DEBUG_PRINTLN(F("Gaps loaded."));
2023-02-09 19:15:55 +00:00
releaseJSONBufferLock();
}
unsigned x, y, pix=0; //pixel
for (const Panel &p : panel) {
unsigned h = p.vertical ? p.height : p.width;
unsigned v = p.vertical ? p.width : p.height;
for (size_t j = 0; j < v; j++){
2023-02-09 19:15:55 +00:00
for(size_t i = 0; i < h; i++) {
y = (p.vertical?p.rightStart:p.bottomStart) ? v-j-1 : j;
x = (p.vertical?p.bottomStart:p.rightStart) ? h-i-1 : i;
x = p.serpentine && j%2 ? h-x-1 : x;
2023-02-09 19:15:55 +00:00
size_t index = (p.yOffset + (p.vertical?x:y)) * Segment::maxWidth + p.xOffset + (p.vertical?y:x);
if (!gapTable || (gapTable && gapTable[index] > 0)) customMappingTable[index] = pix; // a useful pixel (otherwise -1 is retained)
if (!gapTable || (gapTable && gapTable[index] >= 0)) pix++; // not a missing pixel
}
}
}
// delete gap array as we no longer need it
2025-04-26 18:08:15 +00:00
p_free(gapTable);
resume();
2023-02-09 19:15:55 +00:00
#ifdef WLED_DEBUG
DEBUG_PRINT(F("Matrix ledmap:"));
for (unsigned i=0; i<customMappingSize; i++) {
if (!(i%Segment::maxWidth)) DEBUG_PRINTLN();
DEBUG_PRINTF_P(PSTR("%4d,"), customMappingTable[i]);
}
DEBUG_PRINTLN();
#endif
2022-12-22 17:13:32 +00:00
} else { // memory allocation error
2024-04-09 06:25:07 +00:00
DEBUG_PRINTLN(F("ERROR 2D LED map allocation error."));
isMatrix = false;
panel.clear();
Segment::maxWidth = _length;
Segment::maxHeight = 1;
resetSegments();
}
}
2022-12-22 17:13:32 +00:00
#else
isMatrix = false; // no matter what config says
#endif
}
2022-05-09 22:35:26 +00:00
///////////////////////////////////////////////////////////
// Segment:: routines
///////////////////////////////////////////////////////////
#ifndef WLED_DISABLE_2D
// pixel is clipped if it falls outside clipping range
// if clipping start > stop the clipping range is inverted
bool IRAM_ATTR_YN Segment::isPixelXYClipped(int x, int y) const {
if (blendingStyle != BLEND_STYLE_FADE && isInTransition() && _clipStart != _clipStop) {
const bool invertX = _clipStart > _clipStop;
const bool invertY = _clipStartY > _clipStopY;
const int cStartX = invertX ? _clipStop : _clipStart;
const int cStopX = invertX ? _clipStart : _clipStop;
const int cStartY = invertY ? _clipStopY : _clipStartY;
const int cStopY = invertY ? _clipStartY : _clipStopY;
if (blendingStyle == BLEND_STYLE_FAIRY_DUST) {
const unsigned width = cStopX - cStartX; // assumes full segment width (faster than virtualWidth())
const unsigned len = width * (cStopY - cStartY); // assumes full segment height (faster than virtualHeight())
if (len < 2) return false;
const unsigned shuffled = hashInt(x + y * width) % len;
const unsigned pos = (shuffled * 0xFFFFU) / len;
return progress() <= pos;
}
if (blendingStyle == BLEND_STYLE_CIRCULAR_IN || blendingStyle == BLEND_STYLE_CIRCULAR_OUT) {
const int cx = (cStopX-cStartX+1) / 2;
const int cy = (cStopY-cStartY+1) / 2;
const bool out = (blendingStyle == BLEND_STYLE_CIRCULAR_OUT);
const unsigned prog = out ? progress() : 0xFFFFU - progress();
int radius2 = max(cx, cy) * prog / 0xFFFF;
radius2 = 2 * radius2 * radius2;
if (radius2 == 0) return out;
const int dx = x - cx;
const int dy = y - cy;
const bool outside = dx * dx + dy * dy > radius2;
return out ? outside : !outside;
}
bool xInside = (x >= cStartX && x < cStopX); if (invertX) xInside = !xInside;
bool yInside = (y >= cStartY && y < cStopY); if (invertY) yInside = !yInside;
const bool clip = blendingStyle == BLEND_STYLE_OUTSIDE_IN ? xInside || yInside : xInside && yInside;
return !clip;
}
return false;
}
void IRAM_ATTR_YN Segment::setPixelColorXY(int x, int y, uint32_t col) const
{
if (!isActive()) return; // not active
if (x >= (int)vWidth() || y >= (int)vHeight() || x < 0 || y < 0) return; // if pixel would fall out of virtual segment just exit
setPixelColorXYRaw(x, y, col);
}
#ifdef WLED_USE_AA_PIXELS
// anti-aliased version of setPixelColorXY()
void Segment::setPixelColorXY(float x, float y, uint32_t col, bool aa) const
{
if (!isActive()) return; // not active
if (x<0.0f || x>1.0f || y<0.0f || y>1.0f) return; // not normalized
float fX = x * (vWidth()-1);
float fY = y * (vHeight()-1);
if (aa) {
unsigned xL = roundf(fX-0.49f);
unsigned xR = roundf(fX+0.49f);
unsigned yT = roundf(fY-0.49f);
unsigned yB = roundf(fY+0.49f);
float dL = (fX - xL)*(fX - xL);
float dR = (xR - fX)*(xR - fX);
float dT = (fY - yT)*(fY - yT);
float dB = (yB - fY)*(yB - fY);
uint32_t cXLYT = getPixelColorXY(xL, yT);
uint32_t cXRYT = getPixelColorXY(xR, yT);
uint32_t cXLYB = getPixelColorXY(xL, yB);
uint32_t cXRYB = getPixelColorXY(xR, yB);
if (xL!=xR && yT!=yB) {
setPixelColorXY(xL, yT, color_blend(col, cXLYT, uint8_t(sqrtf(dL*dT)*255.0f))); // blend TL pixel
setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(sqrtf(dR*dT)*255.0f))); // blend TR pixel
setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(sqrtf(dL*dB)*255.0f))); // blend BL pixel
setPixelColorXY(xR, yB, color_blend(col, cXRYB, uint8_t(sqrtf(dR*dB)*255.0f))); // blend BR pixel
} else if (xR!=xL && yT==yB) {
setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dL*255.0f))); // blend L pixel
setPixelColorXY(xR, yT, color_blend(col, cXRYT, uint8_t(dR*255.0f))); // blend R pixel
} else if (xR==xL && yT!=yB) {
setPixelColorXY(xR, yT, color_blend(col, cXLYT, uint8_t(dT*255.0f))); // blend T pixel
setPixelColorXY(xL, yB, color_blend(col, cXLYB, uint8_t(dB*255.0f))); // blend B pixel
} else {
setPixelColorXY(xL, yT, col); // exact match (x & y land on a pixel)
}
} else {
setPixelColorXY(uint16_t(roundf(fX)), uint16_t(roundf(fY)), col);
}
}
#endif
// returns RGBW values of pixel
uint32_t IRAM_ATTR_YN Segment::getPixelColorXY(int x, int y) const {
if (!isActive()) return 0; // not active
if (x >= (int)vWidth() || y >= (int)vHeight() || x<0 || y<0) return 0; // if pixel would fall out of virtual segment just exit
return getPixelColorXYRaw(x,y);
}
// 2D blurring, can be asymmetrical
void Segment::blur2D(uint8_t blur_x, uint8_t blur_y, bool smear) const {
if (!isActive()) return; // not active
const unsigned cols = vWidth();
const unsigned rows = vHeight();
const auto XY = [&](unsigned x, unsigned y){ return x + y*cols; };
2025-04-26 18:08:15 +00:00
uint32_t lastnew; // not necessary to initialize lastnew and last, as both will be initialized by the first loop iteration
2024-08-14 20:15:48 +00:00
uint32_t last;
2024-10-05 21:31:31 +00:00
if (blur_x) {
const uint8_t keepx = smear ? 255 : 255 - blur_x;
2025-04-26 18:08:15 +00:00
const uint8_t seepx = blur_x >> 1;
for (unsigned row = 0; row < rows; row++) { // blur rows (x direction)
uint32_t carryover = BLACK;
uint32_t curnew = BLACK;
for (unsigned x = 0; x < cols; x++) {
uint32_t cur = getPixelColorRaw(XY(x, row));
uint32_t part = color_fade(cur, seepx);
curnew = color_fade(cur, keepx);
if (x > 0) {
if (carryover) curnew = color_add(curnew, carryover);
uint32_t prev = color_add(lastnew, part);
// optimization: only set pixel if color has changed
if (last != prev) setPixelColorRaw(XY(x - 1, row), prev);
} else setPixelColorRaw(XY(x, row), curnew); // first pixel
lastnew = curnew;
last = cur; // save original value for comparison on next iteration
carryover = part;
}
setPixelColorRaw(XY(cols-1, row), curnew); // set last pixel
2024-08-14 20:15:48 +00:00
}
}
2024-10-05 21:31:31 +00:00
if (blur_y) {
const uint8_t keepy = smear ? 255 : 255 - blur_y;
2025-04-26 18:08:15 +00:00
const uint8_t seepy = blur_y >> 1;
for (unsigned col = 0; col < cols; col++) {
uint32_t carryover = BLACK;
uint32_t curnew = BLACK;
for (unsigned y = 0; y < rows; y++) {
uint32_t cur = getPixelColorRaw(XY(col, y));
uint32_t part = color_fade(cur, seepy);
curnew = color_fade(cur, keepy);
if (y > 0) {
if (carryover) curnew = color_add(curnew, carryover);
uint32_t prev = color_add(lastnew, part);
// optimization: only set pixel if color has changed
if (last != prev) setPixelColorRaw(XY(col, y - 1), prev);
} else setPixelColorRaw(XY(col, y), curnew); // first pixel
lastnew = curnew;
last = cur; //save original value for comparison on next iteration
carryover = part;
}
setPixelColorRaw(XY(col, rows - 1), curnew);
2024-08-14 20:15:48 +00:00
}
2024-05-09 22:02:28 +00:00
}
2024-08-14 20:15:48 +00:00
}
/*
2024-08-14 20:15:48 +00:00
// 2D Box blur
void Segment::box_blur(unsigned radius, bool smear) {
if (!isActive() || radius == 0) return; // not active
if (radius > 3) radius = 3;
const unsigned d = (1 + 2*radius) * (1 + 2*radius); // averaging divisor
const unsigned cols = vWidth();
const unsigned rows = vHeight();
2024-08-14 20:15:48 +00:00
uint16_t *tmpRSum = new uint16_t[cols*rows];
uint16_t *tmpGSum = new uint16_t[cols*rows];
uint16_t *tmpBSum = new uint16_t[cols*rows];
uint16_t *tmpWSum = new uint16_t[cols*rows];
// fill summed-area table (https://en.wikipedia.org/wiki/Summed-area_table)
for (unsigned x = 0; x < cols; x++) {
unsigned rS, gS, bS, wS;
unsigned index;
rS = gS = bS = wS = 0;
for (unsigned y = 0; y < rows; y++) {
index = x * cols + y;
if (x > 0) {
unsigned index2 = (x - 1) * cols + y;
tmpRSum[index] = tmpRSum[index2];
tmpGSum[index] = tmpGSum[index2];
tmpBSum[index] = tmpBSum[index2];
tmpWSum[index] = tmpWSum[index2];
} else {
tmpRSum[index] = 0;
tmpGSum[index] = 0;
tmpBSum[index] = 0;
tmpWSum[index] = 0;
}
uint32_t c = getPixelColorXY(x, y);
rS += R(c);
gS += G(c);
bS += B(c);
wS += W(c);
tmpRSum[index] += rS;
tmpGSum[index] += gS;
tmpBSum[index] += bS;
tmpWSum[index] += wS;
}
2024-05-09 22:02:28 +00:00
}
2024-08-14 20:15:48 +00:00
// do a box blur using pre-calculated sums
for (unsigned x = 0; x < cols; x++) {
for (unsigned y = 0; y < rows; y++) {
// sum = D + A - B - C where k = (x,y)
// +----+-+---- (x)
// | | |
// +----A-B
// | |k|
// +----C-D
// |
//(y)
unsigned x0 = x < radius ? 0 : x - radius;
unsigned y0 = y < radius ? 0 : y - radius;
unsigned x1 = x >= cols - radius ? cols - 1 : x + radius;
unsigned y1 = y >= rows - radius ? rows - 1 : y + radius;
unsigned A = x0 * cols + y0;
unsigned B = x1 * cols + y0;
unsigned C = x0 * cols + y1;
unsigned D = x1 * cols + y1;
unsigned r = tmpRSum[D] + tmpRSum[A] - tmpRSum[C] - tmpRSum[B];
unsigned g = tmpGSum[D] + tmpGSum[A] - tmpGSum[C] - tmpGSum[B];
unsigned b = tmpBSum[D] + tmpBSum[A] - tmpBSum[C] - tmpBSum[B];
unsigned w = tmpWSum[D] + tmpWSum[A] - tmpWSum[C] - tmpWSum[B];
setPixelColorXY(x, y, RGBW32(r/d, g/d, b/d, w/d));
}
}
2024-08-14 20:15:48 +00:00
delete[] tmpRSum;
delete[] tmpGSum;
delete[] tmpBSum;
delete[] tmpWSum;
}
*/
void Segment::moveX(int delta, bool wrap) const {
if (!isActive() || !delta) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
const auto XY = [&](unsigned x, unsigned y){ return x + y*vW; };
int absDelta = abs(delta);
if (absDelta >= vW) return;
uint32_t newPxCol[vW];
int newDelta;
int stop = vW;
int start = 0;
2024-10-05 21:31:31 +00:00
if (wrap) newDelta = (delta + vW) % vW; // +cols in case delta < 0
else {
2024-10-05 21:31:31 +00:00
if (delta < 0) start = absDelta;
stop = vW - absDelta;
newDelta = delta > 0 ? delta : 0;
}
for (int y = 0; y < vH; y++) {
for (int x = 0; x < stop; x++) {
2024-10-05 21:31:31 +00:00
int srcX = x + newDelta;
if (wrap) srcX %= vW; // Wrap using modulo when `wrap` is true
newPxCol[x] = getPixelColorRaw(XY(srcX, y));
2022-05-19 16:27:04 +00:00
}
for (int x = 0; x < stop; x++) setPixelColorRaw(XY(x + start, y), newPxCol[x]);
2022-05-19 16:27:04 +00:00
}
}
void Segment::moveY(int delta, bool wrap) const {
if (!isActive() || !delta) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
const auto XY = [&](unsigned x, unsigned y){ return x + y*vW; };
int absDelta = abs(delta);
if (absDelta >= vH) return;
uint32_t newPxCol[vH];
int newDelta;
int stop = vH;
int start = 0;
2024-10-05 21:31:31 +00:00
if (wrap) newDelta = (delta + vH) % vH; // +rows in case delta < 0
else {
2024-10-05 21:31:31 +00:00
if (delta < 0) start = absDelta;
stop = vH - absDelta;
newDelta = delta > 0 ? delta : 0;
}
for (int x = 0; x < vW; x++) {
for (int y = 0; y < stop; y++) {
2024-10-05 21:31:31 +00:00
int srcY = y + newDelta;
if (wrap) srcY %= vH; // Wrap using modulo when `wrap` is true
newPxCol[y] = getPixelColorRaw(XY(x, srcY));
2022-05-19 16:27:04 +00:00
}
for (int y = 0; y < stop; y++) setPixelColorRaw(XY(x, y + start), newPxCol[y]);
2022-05-19 16:27:04 +00:00
}
}
// move() - move all pixels in desired direction delta number of pixels
// @param dir direction: 0=left, 1=left-up, 2=up, 3=right-up, 4=right, 5=right-down, 6=down, 7=left-down
// @param delta number of pixels to move
// @param wrap around
void Segment::move(unsigned dir, unsigned delta, bool wrap) const {
if (delta==0) return;
switch (dir) {
case 0: moveX( delta, wrap); break;
case 1: moveX( delta, wrap); moveY( delta, wrap); break;
case 2: moveY( delta, wrap); break;
case 3: moveX(-delta, wrap); moveY( delta, wrap); break;
case 4: moveX(-delta, wrap); break;
case 5: moveX(-delta, wrap); moveY(-delta, wrap); break;
case 6: moveY(-delta, wrap); break;
case 7: moveX( delta, wrap); moveY(-delta, wrap); break;
}
}
void Segment::drawCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) const {
if (!isActive() || radius == 0) return; // not active
2024-05-09 22:02:28 +00:00
if (soft) {
// Xiaolin Wus algorithm
const int rsq = radius*radius;
2024-05-09 22:02:28 +00:00
int x = 0;
int y = radius;
unsigned oldFade = 0;
while (x < y) {
float yf = sqrtf(float(rsq - x*x)); // needs to be floating point
uint8_t fade = float(0xFF) * (ceilf(yf) - yf); // how much color to keep
2024-05-09 22:02:28 +00:00
if (oldFade > fade) y--;
oldFade = fade;
int px, py;
for (uint8_t i = 0; i < 16; i++) {
int swaps = (i & 0x4 ? 1 : 0); // 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1
int adj = (i < 8) ? 0 : 1; // 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
int dx = (i & 1) ? -1 : 1; // 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1
int dy = (i & 2) ? -1 : 1; // 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1
if (swaps) {
px = cx + (y - adj) * dx;
py = cy + x * dy;
} else {
px = cx + x * dx;
py = cy + (y - adj) * dy;
}
uint32_t pixCol = getPixelColorXY(px, py);
setPixelColorXY(px, py, adj ?
color_blend(pixCol, col, fade) :
color_blend(col, pixCol, fade));
}
2024-05-09 22:02:28 +00:00
x++;
}
} else {
// Bresenhams Algorithm
int d = 3 - (2*radius);
int y = radius, x = 0;
while (y >= x) {
for (int i = 0; i < 4; i++) {
int dx = (i & 1) ? -x : x;
int dy = (i & 2) ? -y : y;
setPixelColorXY(cx + dx, cy + dy, col);
setPixelColorXY(cx + dy, cy + dx, col);
}
2024-05-09 22:02:28 +00:00
x++;
if (d > 0) {
y--;
d += 4 * (x - y) + 10;
} else {
d += 4 * x + 6;
}
}
}
}
// by stepko, taken from https://editor.soulmatelights.com/gallery/573-blobs
void Segment::fillCircle(uint16_t cx, uint16_t cy, uint8_t radius, uint32_t col, bool soft) const {
if (!isActive() || radius == 0) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
2024-05-09 22:02:28 +00:00
// draw soft bounding circle
if (soft) drawCircle(cx, cy, radius, col, soft);
// fill it
for (int y = -radius; y <= radius; y++) {
for (int x = -radius; x <= radius; x++) {
2022-05-23 19:04:16 +00:00
if (x * x + y * y <= radius * radius &&
int(cx)+x >= 0 && int(cy)+y >= 0 &&
int(cx)+x < vW && int(cy)+y < vH)
setPixelColorXY(cx + x, cy + y, col);
}
}
}
//line function
void Segment::drawLine(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint32_t c, bool soft) const {
if (!isActive()) return; // not active
const int vW = vWidth(); // segment width in logical pixels (can be 0 if segment is inactive)
const int vH = vHeight(); // segment height in logical pixels (is always >= 1)
if (x0 >= vW || x1 >= vW || y0 >= vH || y1 >= vH) return;
2024-05-09 22:02:28 +00:00
const int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1; // x distance & step
const int dy = abs(y1-y0), sy = y0<y1 ? 1 : -1; // y distance & step
// single pixel (line length == 0)
if (dx+dy == 0) {
setPixelColorXY(x0, y0, c);
return;
}
if (soft) {
// Xiaolin Wus algorithm
const bool steep = dy > dx;
if (steep) {
// we need to go along longest dimension
std::swap(x0,y0);
std::swap(x1,y1);
}
if (x0 > x1) {
// we need to go in increasing fashion
std::swap(x0,x1);
std::swap(y0,y1);
}
float gradient = x1-x0 == 0 ? 1.0f : float(y1-y0) / float(x1-x0);
float intersectY = y0;
for (int x = x0; x <= x1; x++) {
uint8_t keep = float(0xFF) * (intersectY-int(intersectY)); // how much color to keep
uint8_t seep = 0xFF - keep; // how much background to keep
2024-05-09 22:02:28 +00:00
int y = int(intersectY);
if (steep) std::swap(x,y); // temporaryly swap if steep
// pixel coverage is determined by fractional part of y co-ordinate
blendPixelColorXY(x, y, c, seep);
blendPixelColorXY(x+int(steep), y+int(!steep), c, keep);
2024-05-09 22:02:28 +00:00
intersectY += gradient;
if (steep) std::swap(x,y); // restore if steep
}
} else {
// Bresenham's algorithm
int err = (dx>dy ? dx : -dy)/2; // error direction
for (;;) {
setPixelColorXY(x0, y0, c);
if (x0==x1 && y0==y1) break;
int e2 = err;
if (e2 >-dx) { err -= dy; x0 += sx; }
if (e2 < dy) { err += dx; y0 += sy; }
}
}
}
#include "src/font/console_font_4x6.h"
#include "src/font/console_font_5x8.h"
#include "src/font/console_font_5x12.h"
#include "src/font/console_font_6x8.h"
#include "src/font/console_font_7x9.h"
2022-06-17 19:19:12 +00:00
// draws a raster font character on canvas
// only supports: 4x6=24, 5x8=40, 5x12=60, 6x8=48 and 7x9=63 fonts ATM
void Segment::drawCharacter(unsigned char chr, int16_t x, int16_t y, uint8_t w, uint8_t h, uint32_t color, uint32_t col2, int8_t rotate) const {
if (!isActive()) return; // not active
if (chr < 32 || chr > 126) return; // only ASCII 32-126 supported
chr -= 32; // align with font table entries
const int font = w*h;
2025-04-26 18:08:15 +00:00
// if col2 == BLACK then use currently selected palette for gradient otherwise create gradient from color and col2
CRGBPalette16 grad = col2 ? CRGBPalette16(CRGB(color), CRGB(col2)) : SEGPALETTE; // selected palette as gradient
for (int i = 0; i<h; i++) { // character height
uint8_t bits = 0;
switch (font) {
case 24: bits = pgm_read_byte_near(&console_font_4x6[(chr * h) + i]); break; // 4x6 font
2022-08-12 22:58:27 +00:00
case 40: bits = pgm_read_byte_near(&console_font_5x8[(chr * h) + i]); break; // 5x8 font
case 48: bits = pgm_read_byte_near(&console_font_6x8[(chr * h) + i]); break; // 6x8 font
case 63: bits = pgm_read_byte_near(&console_font_7x9[(chr * h) + i]); break; // 7x9 font
case 60: bits = pgm_read_byte_near(&console_font_5x12[(chr * h) + i]); break; // 5x12 font
default: return;
2022-06-17 19:19:12 +00:00
}
CRGBW c = ColorFromPalette(grad, (i+1)*255/h, 255, LINEARBLEND_NOWRAP); // NOBLEND is faster
for (int j = 0; j<w; j++) { // character width
int x0, y0;
switch (rotate) {
case -1: x0 = x + (h-1) - i; y0 = y + (w-1) - j; break; // -90 deg
case -2:
case 2: x0 = x + j; y0 = y + (h-1) - i; break; // 180 deg
case 1: x0 = x + i; y0 = y + j; break; // +90 deg
default: x0 = x + (w-1) - j; y0 = y + i; break; // no rotation
}
if (x0 < 0 || x0 >= (int)vWidth() || y0 < 0 || y0 >= (int)vHeight()) continue; // drawing off-screen
if (((bits>>(j+(8-w))) & 0x01)) { // bit set
setPixelColorXYRaw(x0, y0, c.color32);
}
}
}
}
#define WU_WEIGHT(a,b) ((uint8_t) (((a)*(b)+(a)+(b))>>8))
void Segment::wu_pixel(uint32_t x, uint32_t y, CRGB c) const { //awesome wu_pixel procedure by reddit u/sutaburosu
if (!isActive()) return; // not active
// extract the fractional parts and derive their inverses
unsigned xx = x & 0xff, yy = y & 0xff, ix = 255 - xx, iy = 255 - yy;
// calculate the intensities for each affected pixel
uint8_t wu[4] = {WU_WEIGHT(ix, iy), WU_WEIGHT(xx, iy),
WU_WEIGHT(ix, yy), WU_WEIGHT(xx, yy)};
// multiply the intensities by the colour, and saturating-add them to the pixels
for (int i = 0; i < 4; i++) {
2024-09-29 16:37:18 +00:00
int wu_x = (x >> 8) + (i & 1); // precalculate x
int wu_y = (y >> 8) + ((i >> 1) & 1); // precalculate y
CRGB led = getPixelColorXY(wu_x, wu_y);
CRGB oldLed = led;
2022-08-02 16:27:32 +00:00
led.r = qadd8(led.r, c.r * wu[i] >> 8);
led.g = qadd8(led.g, c.g * wu[i] >> 8);
led.b = qadd8(led.b, c.b * wu[i] >> 8);
2024-09-29 16:37:18 +00:00
if (led != oldLed) setPixelColorXY(wu_x, wu_y, led); // don't repaint if same color
}
}
#undef WU_WEIGHT
#endif // WLED_DISABLE_2D