Teathimble_Firmware/pinio.h

444 wiersze
11 KiB
C

/** \file
\brief I/O primitives - step, enable, direction, endstops etc
*/
#ifndef _PINIO_H
#define _PINIO_H
#include "config.h"
// Configuration tests.
#ifdef USE_INTERNAL_PULLDOWNS
#ifdef USE_INTERNAL_PULLUPS
#error Cant use USE_INTERNAL_PULLUPS and ..._PULLDOWNS at the same time.
#endif
#endif
#ifndef MASK
/// MASKING- returns \f$2^PIN\f$
#define MASK(PIN) (1 << PIN)
#endif
/** Magic I/O routines, also known as "FastIO".
Now you can simply SET_OUTPUT(STEP); WRITE(STEP, 1); WRITE(STEP, 0);.
The point here is to move any pin/port mapping calculations into the
preprocessor. This way there is no longer math at runtime neccessary, all
instructions melt into a single one with fixed numbers.
This makes code for setting a pin small, smaller than calling a subroutine.
It also make code fast, on AVR a pin can be turned on and off in just two
clock cycles.
*/
#if defined __AVR__
#include <avr/io.h>
/// Read a pin.
#define _READ(IO) (IO ## _RPORT & MASK(IO ## _PIN))
/// Write to a pin.
#define _WRITE(IO, v) \
do { \
if (v) { IO ## _WPORT |= MASK(IO ## _PIN); } \
else { IO ## _WPORT &= ~MASK(IO ## _PIN); } \
} while (0)
/**
Setting pins as input/output: other than with ARMs, function of a pin
on AVR isn't given by a dedicated function register, but solely by the
on-chip peripheral connected to it. With the peripheral (e.g. UART, SPI,
...) connected, a pin automatically serves with this function. With the
peripheral disconnected, it automatically returns to general I/O function.
*/
/// Set pin as input.
#define _SET_INPUT(IO) do { IO ## _DDR &= ~MASK(IO ## _PIN); } while (0)
/// Set pin as output.
#define _SET_OUTPUT(IO) do { IO ## _DDR |= MASK(IO ## _PIN); } while (0)
/// Enable pullup resistor.
#define _PULLUP_ON(IO) _WRITE(IO, 1)
/// No such feature on ATmegas.
#define _PULLDOWN_ON(IO) atmegas_dont_support_pulldown_resistors()
/// Disable pullup resistor.
#define _PULL_OFF(IO) _WRITE(IO, 0)
#elif defined __ARMEL__
/**
The LPC1114 supports bit-banding by mapping the bit mask to the address.
See chapter 12 in the LPC111x User Manual. A read-modify-write cycle like
on AVR costs 5 clock cycles, this implementation works with 3 clock cycles.
*/
/// Read a pin.
#define _READ(IO) (IO ## _PORT->MASKED_ACCESS[MASK(IO ## _PIN)])
/// Write to a pin.
#define _WRITE(IO, v) \
do { \
IO ## _PORT->MASKED_ACCESS[MASK(IO ## _PIN)] = \
(v) ? MASK(IO ## _PIN) : 0; \
} while (0)
/**
Set pins as input/output. On ARM, each pin has its own IOCON register,
which allows to set its function and mode. We always set here standard
GPIO behavior. Peripherals using these pins may have to change this and
should do so in their own context.
*/
/// Set pin as input.
#define _SET_INPUT(IO) \
do { \
LPC_IOCON->IO ## _CMSIS = (IO ## _OUTPUT | IO_MODEMASK_REPEATER); \
IO ## _PORT->DIR &= ~MASK(IO ## _PIN); \
} while (0)
/// Set pin as output.
#define _SET_OUTPUT(IO) \
do { \
LPC_IOCON->IO ## _CMSIS = IO ## _OUTPUT; \
IO ## _PORT->DIR |= MASK(IO ## _PIN); \
} while (0)
/// Enable pullup resistor or switch from pulldown to pullup.
#define _PULLUP_ON(IO) \
do { \
LPC_IOCON->IO ## _CMSIS = (IO ## _OUTPUT | IO_MODEMASK_PULLUP); \
} while (0)
/// Enable pulldown resistor or switch from pullup to pulldown.
#define _PULLDOWN_ON(IO) \
do { \
LPC_IOCON->IO ## _CMSIS = (IO ## _OUTPUT | IO_MODEMASK_PULLDOWN); \
} while (0)
/// Disable pull resistor.
#define _PULL_OFF(IO) \
do { \
LPC_IOCON->IO ## _CMSIS = (IO ## _OUTPUT | IO_MODEMASK_INACTIVE); \
} while (0)
#elif defined SIMULATOR
#include "simulator.h"
bool _READ(pin_t pin);
void _WRITE(pin_t pin, bool on);
void _SET_OUTPUT(pin_t pin);
void _SET_INPUT(pin_t pin);
#define _PULLUP_ON(IO) _WRITE(IO, 1)
#define _PULL_OFF(IO) _WRITE(IO, 0)
#endif /* __AVR__, __ARMEL__, SIMULATOR */
/**
Why double up on these macros?
See http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
*/
/// Read a pin wrapper.
#define READ(IO) _READ(IO)
/// Write to a pin wrapper.
#define WRITE(IO, v) _WRITE(IO, v)
/// Set pin as input wrapper.
#define SET_INPUT(IO) _SET_INPUT(IO)
/// Set pin as output wrapper.
#define SET_OUTPUT(IO) _SET_OUTPUT(IO)
/// Enable pullup resistor or switch from pulldown to pullup.
#define PULLUP_ON(IO) _PULLUP_ON(IO)
/// Enable pulldown resistor or switch from pullup to pulldown.
#define PULLDOWN_ON(IO) _PULLDOWN_ON(IO)
/// Disable pull resistor.
#define PULL_OFF(IO) _PULL_OFF(IO)
/*
Power
*/
/// psu_timeout is set to zero when we step, and increases over time so we can
/// turn the motors off when they've been idle for a while.
/// A second function is to guarantee a minimum on time of the PSU.
/// Timeout counting is done in clock.c.
/// It is used inside and outside of interrupts, which is why it has been made volatile
/*extern volatile uint8_t psu_timeout;
static void power_init(void);
inline void power_init(void) {
#ifdef PS_MOSFET_PIN
WRITE(PS_MOSFET_PIN, 0);
SET_OUTPUT(PS_MOSFET_PIN);
#endif
}*/
#ifdef __cplusplus
extern "C" {
#endif
void pinio_init(void);
void power_on(void);
void power_off(void);
#ifdef __cplusplus
}
#endif
/*
X Stepper
*/
#define _x_step(st) WRITE(X_STEP_PIN, st)
#define x_step() _x_step(1)
#ifndef X_INVERT_DIR
#define x_direction(dir) WRITE(X_DIR_PIN, dir)
#else
#define x_direction(dir) WRITE(X_DIR_PIN, (dir)^1)
#endif
#ifdef X_MIN_PIN
#ifndef X_INVERT_MIN
#define x_min() (READ(X_MIN_PIN)?1:0)
#else
#define x_min() (READ(X_MIN_PIN)?0:1)
#endif
#else
#define x_min() (0)
#endif
#ifdef X_MAX_PIN
#ifndef X_INVERT_MAX
#define x_max() (READ(X_MAX_PIN)?1:0)
#else
#define x_max() (READ(X_MAX_PIN)?0:1)
#endif
#else
#define x_max() (0)
#endif
/*
Y Stepper
*/
#define _y_step(st) WRITE(Y_STEP_PIN, st)
#define y_step() _y_step(1)
#ifndef Y_INVERT_DIR
#define y_direction(dir) WRITE(Y_DIR_PIN, dir)
#else
#define y_direction(dir) WRITE(Y_DIR_PIN, (dir)^1)
#endif
#ifdef Y_MIN_PIN
#ifndef Y_INVERT_MIN
#define y_min() (READ(Y_MIN_PIN)?1:0)
#else
#define y_min() (READ(Y_MIN_PIN)?0:1)
#endif
#else
#define y_min() (0)
#endif
#ifdef Y_MAX_PIN
#ifndef Y_INVERT_MAX
#define y_max() (READ(Y_MAX_PIN)?1:0)
#else
#define y_max() (READ(Y_MAX_PIN)?0:1)
#endif
#else
#define y_max() (0)
#endif
/*
Z Stepper
*/
#if defined Z_STEP_PIN && defined Z_DIR_PIN
#define _z_step(st) WRITE(Z_STEP_PIN, st)
#define z_step() _z_step(1)
#ifndef Z_INVERT_DIR
#define z_direction(dir) WRITE(Z_DIR_PIN, dir)
#else
#define z_direction(dir) WRITE(Z_DIR_PIN, (dir)^1)
#endif
#else
#define _z_step(x) do { } while (0)
#define z_step() do { } while (0)
#define z_direction(x) do { } while (0)
#endif
#ifdef Z_MIN_PIN
#ifndef Z_INVERT_MIN
#define z_min() (READ(Z_MIN_PIN)?1:0)
#else
#define z_min() (READ(Z_MIN_PIN)?0:1)
#endif
#else
#define z_min() (0)
#endif
#ifdef Z_MAX_PIN
#ifndef Z_INVERT_MAX
#define z_max() (READ(Z_MAX_PIN)?1:0)
#else
#define z_max() (READ(Z_MAX_PIN)?0:1)
#endif
#else
#define z_max() (0)
#endif
/*
Extruder
*/
#if defined E_STEP_PIN && defined E_DIR_PIN
#define _e_step(st) WRITE(E_STEP_PIN, st)
#define e_step() _e_step(1)
#ifndef E_INVERT_DIR
#define e_direction(dir) WRITE(E_DIR_PIN, dir)
#else
#define e_direction(dir) WRITE(E_DIR_PIN, (dir)^1)
#endif
#else
#define _e_step(st) do { } while (0)
#define e_step() do { } while (0)
#define e_direction(dir) do { } while (0)
#endif
/*
End Step - All Steppers
(so we don't have to delay in interrupt context)
*/
#define unstep() do { _x_step(0); _y_step(0); _z_step(0); _e_step(0); } while (0)
/*
Stepper Enable Pins
*/
#ifdef STEPPER_ENABLE_PIN
#ifdef STEPPER_INVERT_ENABLE
#define stepper_enable() do { WRITE(STEPPER_ENABLE_PIN, 0); } while (0)
#define stepper_disable() do { WRITE(STEPPER_ENABLE_PIN, 1); } while (0)
#else
#define stepper_enable() do { WRITE(STEPPER_ENABLE_PIN, 1); } while (0)
#define stepper_disable() do { WRITE(STEPPER_ENABLE_PIN, 0); } while (0)
#endif
#else
#define stepper_enable() do { } while (0)
#define stepper_disable() do { } while (0)
#endif
#ifdef X_ENABLE_PIN
#ifdef X_INVERT_ENABLE
#define x_enable() do { WRITE(X_ENABLE_PIN, 0); } while (0)
#define x_disable() do { WRITE(X_ENABLE_PIN, 1); } while (0)
#else
#define x_enable() do { WRITE(X_ENABLE_PIN, 1); } while (0)
#define x_disable() do { WRITE(X_ENABLE_PIN, 0); } while (0)
#endif
#else
#define x_enable() do { } while (0)
#define x_disable() do { } while (0)
#endif
#ifdef Y_ENABLE_PIN
#ifdef Y_INVERT_ENABLE
#define y_enable() do { WRITE(Y_ENABLE_PIN, 0); } while (0)
#define y_disable() do { WRITE(Y_ENABLE_PIN, 1); } while (0)
#else
#define y_enable() do { WRITE(Y_ENABLE_PIN, 1); } while (0)
#define y_disable() do { WRITE(Y_ENABLE_PIN, 0); } while (0)
#endif
#else
#define y_enable() do { } while (0)
#define y_disable() do { } while (0)
#endif
#ifdef Z_ENABLE_PIN
#ifdef Z_INVERT_ENABLE
#define z_enable() do { WRITE(Z_ENABLE_PIN, 0); } while (0)
#define z_disable() do { WRITE(Z_ENABLE_PIN, 1); } while (0)
#else
#define z_enable() do { WRITE(Z_ENABLE_PIN, 1); } while (0)
#define z_disable() do { WRITE(Z_ENABLE_PIN, 0); } while (0)
#endif
#else
#define z_enable() do { } while (0)
#define z_disable() do { } while (0)
#endif
#ifdef E_ENABLE_PIN
#ifdef E_INVERT_ENABLE
#define e_enable() do { WRITE(E_ENABLE_PIN, 0); } while (0)
#define e_disable() do { WRITE(E_ENABLE_PIN, 1); } while (0)
#else
#define e_enable() do { WRITE(E_ENABLE_PIN, 1); } while (0)
#define e_disable() do { WRITE(E_ENABLE_PIN, 0); } while (0)
#endif
#else
#define e_enable() do { } while (0)
#define e_disable() do { } while (0)
#endif
/*
Internal pullup resistors for endstops
*/
static void endstops_on(void) __attribute__ ((always_inline));
inline void endstops_on(void) {
#ifdef USE_INTERNAL_PULLUPS
#ifdef X_MIN_PIN
PULLUP_ON(X_MIN_PIN);
#endif
#ifdef X_MAX_PIN
PULLUP_ON(X_MAX_PIN);
#endif
#ifdef Y_MIN_PIN
PULLUP_ON(Y_MIN_PIN);
#endif
#ifdef Y_MAX_PIN
PULLUP_ON(Y_MAX_PIN);
#endif
#ifdef Z_MIN_PIN
PULLUP_ON(Z_MIN_PIN);
#endif
#ifdef Z_MAX_PIN
PULLUP_ON(Z_MAX_PIN);
#endif
#endif
#ifdef USE_INTERNAL_PULLDOWNS
#ifdef X_MIN_PIN
PULLDOWN_ON(X_MIN_PIN);
#endif
#ifdef X_MAX_PIN
PULLDOWN_ON(X_MAX_PIN);
#endif
#ifdef Y_MIN_PIN
PULLDOWN_ON(Y_MIN_PIN);
#endif
#ifdef Y_MAX_PIN
PULLDOWN_ON(Y_MAX_PIN);
#endif
#ifdef Z_MIN_PIN
PULLDOWN_ON(Z_MIN_PIN);
#endif
#ifdef Z_MAX_PIN
PULLDOWN_ON(Z_MAX_PIN);
#endif
#endif
}
static void endstops_off(void) __attribute__ ((always_inline));
inline void endstops_off(void) {
#if (defined USE_INTERNAL_PULLUPS) || (defined USE_INTERNAL_PULLDOWNS)
#ifdef X_MIN_PIN
PULL_OFF(X_MIN_PIN);
#endif
#ifdef X_MAX_PIN
PULL_OFF(X_MAX_PIN);
#endif
#ifdef Y_MIN_PIN
PULL_OFF(Y_MIN_PIN);
#endif
#ifdef Y_MAX_PIN
PULL_OFF(Y_MAX_PIN);
#endif
#ifdef Z_MIN_PIN
PULL_OFF(Z_MIN_PIN);
#endif
#ifdef Z_MAX_PIN
PULL_OFF(Z_MAX_PIN);
#endif
#endif
}
#endif /* _PINIO_H */