SignalFilters/Code_Python/utils.py

293 wiersze
7.8 KiB
Python

"""
Utility functions for ????.
Copyright (c) 2020 Gabriele Gilardi
"""
from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
def normalize_data(X, param=(), ddof=0):
"""
If mu and sigma are not defined, returns a column-normalized version of
X with zero mean and standard deviation equal to one. If mu and sigma are
defined returns a column-normalized version of X using mu and sigma.
X Input dataset
Xn Column-normalized input dataset
param Tuple with mu and sigma
mu Mean
sigma Standard deviation
ddof Delta degrees of freedom (if ddof = 0 then divide by m, if
ddof = 1 then divide by m-1, with m the number of data in X)
"""
# Column-normalize using mu and sigma
if (len(param) > 0):
Xn = (X - param[0]) / param[1]
return Xn
# Column-normalize using mu=0 and sigma=1
else:
mu = X.mean(axis=0)
sigma = X.std(axis=0, ddof=ddof)
Xn = (X - mu) / sigma
param = (mu, sigma)
return Xn, param
def scale_data(X, param=()):
"""
If X_min and X_max are not defined, returns a column-scaled version of
X in the interval (-1,+1). If X_min and X_max are defined returns a
column-scaled version of X using X_min and X_max.
X Input dataset
Xs Column-scaled input dataset
param Tuple with X_min and X_max
X_min Min. value along the columns (features) of the input dataset
X_max Max. value along the columns (features) of the input dataset
"""
# Column-scale using X_min and X_max
if (len(param) > 0):
Xs = -1.0 + 2.0 * (X - param[0]) / (param[1] - param[0])
return Xs
# Column-scale using X_min=-1 and X_max=+1
else:
X_min = np.amin(X, axis=0)
X_max = np.amax(X, axis=0)
Xs = -1.0 + 2.0 * (X - X_min) / (X_max - X_min)
param = (X_min, X_max)
return Xs, param
def plot_signals(signals, idx_start=0, idx_end=None):
"""
"""
if (idx_end is None):
idx_end = len(signals[0])
t = np.arange(idx_start, idx_end)
names = []
count = 0
for signal in signals:
plt.plot(t, signal[idx_start:idx_end])
names.append(str(count))
count += 1
plt.grid(b=True)
plt.legend(names)
plt.show()
def plot_frequency_response(b, a=1.0):
"""
"""
b = np.asarray(b)
a = np.asarray(a)
w, h = signal.freqz(b, a)
h_db = 20.0 * np.log10(abs(h))
wf = w / (2.0 * np.pi)
plt.plot(wf, h_db)
plt.axhline(-3.0, lw=1.5, ls='--', C='r')
plt.grid(b=True)
plt.xlim(np.amin(wf), np.amax(wf))
# plt.ylim(-40.0, 0.0)
plt.xlabel('$\omega$ [rad/sample]')
plt.ylabel('$h$ [db]')
plt.show()
def plot_lag_response(b, a=1.0):
"""
"""
b = np.asarray(b)
a = np.asarray(a)
w, gd = signal.group_delay((b, a))
wf = w / (2.0 * np.pi)
plt.plot(wf, gd)
plt.grid(b=True)
plt.xlim(np.amin(wf), np.amax(wf))
plt.xlabel('$\omega$ [rad/sample]')
plt.ylabel('$gd$ [samples]')
plt.show()
def synthetic_wave(per, amp=None, pha=None, tim=None):
"""
Generates a multi-sinewave.
P = [ P1 P2 ... Pn ] Periods
varargin = A, T, PH Amplitudes, time, phases
A = [ A1 A2 ... An ] Amplitudes
T = [ ts tf dt] Time info: from ts to tf in dt steps
PH = [PH1 PH2 ... PHn] Phases (rad)
Av = SUM(1 to n) of [ A*sin(2*pi*f*t + PH) ]
Tv Time (ts to tf with step dt)
Default amplitudes are ones
Default time is from 0 to largest period (1000 steps)
Default phases are zeros
"""
n_waves = len(per)
per = np.asarray(per)
# Check for amplitudes, times, and phases
if (amp is None):
amp = np.ones(n_waves)
else:
amp = np.asarray(amp)
if (tim is None):
t_start = 0.0
t_end = np.amax(per)
n_steps = 500
else:
t_start = tim[0]
t_end = tim[1]
n_steps = int(tim[2])
if (pha is None):
pha = np.zeros(n_waves)
else:
pha = np.asarray(pha)
# Add all the waves
t = np.linspace(t_start, t_end, num=n_steps)
f = np.zeros(len(t))
for i in range(n_waves):
f = f + amp[i] * np.sin(2.0 * np.pi * t / per[i] + pha[i])
return t, f
# function sP = SyntQT(P,type)
# % Function: generate a random (synthetic) price curve
# %
# % Inputs
# % ------
# % P prices (for type equal to 'P' and 'R')
# % normal distribution data (for type equal to 'N')
# % P(1) = mean
# % P(2) = std
# % P(3) = length
# % type type of generation
# % P use returns from price
# % R use returns normal distribution
# % N use specified normal distribution
# %
# % Output
# % ------
# % sP generated synthetic prices
# % Check for number of arguments
# if (nargin ~= 2)
# fprintf(1,'\n');
# error('Wrong number of arguments');
# end
# switch(type)
# % Use actual returns from P to generate values
# case 'P'
# R = Price2ret(P,'S'); % "simple" method
# sR = phaseran(R,1);
# % Use normal distribution to generate values
# % (mean and std are from the actual returns of P)
# case 'R'
# R = Price2ret(P,'S'); % "simple" method
# sR = normrnd(mean(R),std(R),length(R),1);
# % Use defined normal distribution to generate values
# % P(1)=mean, P(2)=std, P(3)=length
# case 'N'
# sR = normrnd(P(1),P(2),P(3),1);
# otherwise
# fprintf(1,'\n');
# error('Type not recognized');
# end
# % Use 'simple' method and P0 = 1 to determine price
# sP = Ret2price(sR,'S');
# end % End of function
# % Input data
# % ----------
# % recblk: is a 2D array. Row: time sample. Column: recording.
# % An odd number of time samples (height) is expected. If that is not
# % the case, recblock is reduced by 1 sample before the surrogate
# % data is created.
# % The class must be double and it must be nonsparse.
# % nsurr: is the number of image block surrogates that you want to
# % generate.
# % Output data
# % ---------------------
# % surrblk: 3D multidimensional array image block with the surrogate
# % datasets along the third dimension
# % Example 1
# % ---------
# % x = randn(31,4);
# % x(:,4) = sum(x,2); % Create correlation in the data
# % r1 = corrcoef(x)
# % surr = phaseran(x,10);
# % r2 = corrcoef(surr(:,:,1)) % Check that the correlation is preserved
# % Carlos Gias
# % Date: 21/08/2011
# % Reference:
# % Prichard, D., Theiler, J. Generating Surrogate Data for Time Series
# % with Several Simultaneously Measured Variables (1994)
# % Physical Review Letters, Vol 73, Number 7
# function surrblk = phaseran(recblk,nsurr)
# % Get parameters
# [nfrms,nts] = size(recblk);
# if ( rem(nfrms,2) == 0 )
# nfrms = nfrms-1;
# recblk = recblk(1:nfrms,:);
# end
# % Get parameters
# len_ser = (nfrms-1)/2;
# interv1 = 2:len_ser+1;
# interv2 = len_ser+2:nfrms;
# % Fourier transform of the original dataset
# fft_recblk = fft(recblk);
# % Create the surrogate recording blocks one by one
# surrblk = zeros(nfrms,nts,nsurr);
# for k = 1:nsurr
# ph_rnd = rand([len_ser 1]);
# % Create the random phases for all the time series
# ph_interv1 = repmat(exp(2*pi*1i*ph_rnd),1,nts);
# ph_interv2 = conj(flipud( ph_interv1));
# % Randomize all the time series simultaneously
# fft_recblk_surr = fft_recblk;
# fft_recblk_surr(interv1,:) = fft_recblk(interv1,:).*ph_interv1;
# fft_recblk_surr(interv2,:) = fft_recblk(interv2,:).*ph_interv2;
# % Inverse transform
# surrblk(:,:,k)= real(ifft(fft_recblk_surr));
# end
# end % End of function