master
Gabriele Gilardi 2020-06-10 16:54:22 +09:00
commit 265beea3b0
4 zmienionych plików z 387 dodań i 0 usunięć

153
.gitignore vendored 100644
Wyświetl plik

@ -0,0 +1,153 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# static files generated from Django application using `collectstatic`
media
static
# Visual Studio Code
.vscode/
# Matlab directory
Code_MatLab/
# Docs directory
Docs/
data/

Wyświetl plik

@ -0,0 +1,168 @@
"""
Class for filter/smooth data.
Copyright (c) 2020 Gabriele Gilardi
ToDo:
- generalize to multidimensional input arrays
- use NaN or input values for points not filtered?
- plot filtered data
- add plot filter
"""
import sys
import numpy as np
def Generalized(X, b, a):
"""
Applies a generic filter
Inputs:
X Data to filter
b Transfer response coefficients (numerator)
a Transfer response coefficients (denominator)
Outputs:
Y Filtered data
idx Index first element in Y actually filtered
Elements from 0 to (idx-1) are set equal to NaN.
"""
# Initialize
nel_X = len(X)
nel_b = len(b)
nel_a = len(a)
idx = np.amax([0, nel_b-1, nel_a-1])
Y = X.copy()
# Apply filter
for i in range(idx, nel_X):
tmp = 0.0
# Contribution from [b] (numerator)
for j in range(nel_b):
tmp = tmp + b[j] * X[i-j]
# Contribution from [a] (denominator)
for j in range(1, nel_a):
tmp = tmp - a[j] * Y[i-j]
# Filtered value
Y[i] = tmp / a[0]
# Set elements from 0 to (idx-1) equal to NaN
Y[0:idx] = np.nan
return Y, idx
class Filter:
def __init__(self, X):
"""
"""
self.X = np.asarray(X)
self.nel = len(X)
self.idx = 0
def SMA(self, N=10):
"""
Simple Moving Average
N = order/smoothing factor
"""
b = np.ones(float(N)) / float(N)
a = np.array([1.0])
Y, self.idx = Generalized(self.X, b, a)
return Y
def EMA(self, N=10):
"""
Exponential Moving Average
N = order/smoothing factor
The damping term <alpha> is determined as equivalent to a N-SMA
"""
alpha = 2.0 / (float(N) + 1.0)
b = np.array([alpha])
a = np.array([1.0, alpha-1.0])
Y, self.idx = Generalized(self.X, b, a)
return Y
def InstTrend(self, alpha=0.5):
"""
Instantaneous Trendline (2nd order, IIR, low pass, Ehlers)
alpha = damping term
"""
b = np.array([(alpha-alpha**2/4.0), (alpha**2/2.0),
-(alpha-3.0*alpha**2/4.0)])
a = np.array([1.0, -2.0*(1.0-alpha), (1.0-alpha)**2])
Y, self.idx = Generalized(self.X, b, a)
return Y
def PassBand(self, P=5, delta=0.3):
"""
Pass Band
P = cut-off period (50% power loss, -3 dB)
delta = band centered in P and in percent
(Example: 0.3 => 30% of P => 0.3*P, if P = 10 => 0.3*10 = 3)
"""
beta = np.cos(2.0 * pi / float(P))
gamma = np.cos(2.0*pi*(2.0*delta)/float(P))
alpha = 1.0 / gamma - np.sqrt(1.0 / gamma ** 2 - 1.0)
b = np.array([(1.0-alpha)/2.0, 0.0, -(1.0-alpha)/2.0])
a = np.array([1.0, -beta*(1.0+alpha), alpha])
Y, self.idx = Generalized(self.X, b, a)
return Y
def StopBand(self, P=5, delta=0.3):
"""
Stop Band
P = cut-off period (50% power loss, -3 dB)
delta = band centered in P and in percent
(Example: 0.3 => 30% of P => 0.3*P, if P = 10 => 0.3*10 = 3)
"""
beta = cos(2.0*pi/float(P))
gamma = cos(2.0*pi*(2.0*delta)/float(P))
alpha = 1.0/gamma - sqrt(1.0/gamma**2 - 1.0)
b = np.array([(1.0+alpha)/2.0, -2.0*beta*(1.0+alpha)/2.0,
(1.0+alpha)/2.0])
a = np.array([1.0, -beta*(1.0+alpha), alpha])
Y, self.idx = Generalized(self.X, b, a)
return Y
def GaussLow(self, P=2, N=1):
"""
Gauss Low (low pass, IIR, N-th order, must be P > 1)
P = cut-off period (50% power loss, -3 dB)
N = times the filter is called (order)
"""
P = np.array([2, P], dtype=int).max() # or error? warning?
A = 2.0**(1.0/float(N)) - 1.0
B = 4.0*sin(pi/float(P))**2.0
C = 2.0*(cos(2.0*pi/float(P)) - 1.0)
delta = sqrt(B**2.0 - 4.0*A*C)
alpha = (-B + delta)/(2.0*A)
b = np.array([alpha])
a = np.array([1.0, -(1.0-alpha)])
Y = np.copy(self.X)
for i in range(N):
Y, self.idx = Generalized(Y, b, a)
return Y
def ZEMA1(self, N=10, K=1.0, Vn=5):
"""
Zero lag Exponential Moving Average (type 1)
N = order/smoothing factor
K = coefficient/gain
Vn = look back bar for the momentum
The damping term <alpha> is determined as equivalent to a N-SMA
"""
alpha = 2.0 / (float(N) + 1.0)
b = np.zeros(Vn+1)
b[0] = alpha * (1.0 + K)
b[-1] = - alpha * K
a = np.array([1.0, -(1.0-alpha)])
Y, self.idx = Generalized(self.X, b, a)
return Y

21
LICENSE 100644
Wyświetl plik

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2020 Gabriele Gilardi
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

45
README.md 100644
Wyświetl plik

@ -0,0 +1,45 @@
# Feed-Forward Neural Network (FFNN) for Regression Problems
## Reference
- Mathematical background: ["Neural Networks and Deep Learning"](http://neuralnetworksanddeeplearning.com/index.html).
- Datasets: [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets.php).
## Characteristics
- The code has been written and tested in Python 3.7.7.
- Usage: *python test.py example*.
## Parameters
`example` Name of the example to run (wine, stock, wifi, pulsar.)
`problem` Defines the type of problem. Equal to C specifies logistic regression, anything else specifies linear regression. The default value is `None`.
## Examples
There are four examples in *test.py*: wine, stock, wifi, pulsar. Since GDO is used, `use_grad` is set to `True`. For all examples `init_weights` is also set to `True`.
### Single-label linear regression examples: wine
```python
data_file = 'wine_dataset.csv'
n_features = 11
hidden_layers = [20]
split_factor = 0.7
L2 = 0.0
epochs = 50000
alpha = 0.2
d_alpha = 1.0
tolX = 1.e-7
tolF = 1.e-7
```
Original dataset: <https://archive.ics.uci.edu/ml/datasets/Wine+Quality>.
The dataset has 11 features, 1 label, 4898 samples, 261 variables, and a layout of [11, 20, 1].
Correlation predicted/actual values: 0.708 (training), 0.601 (test).
Exit on `epochs` with `tolX` = 2.0e-4 and `tolF` = 1.1e-7.