RS41ng/legacy-code/main_old.txt

540 wiersze
15 KiB
Plaintext

// STM32F100 and SI4032 RTTY transmitter
// released under GPL v.2 by anonymous developer
// enjoy and have a nice day
// ver 1.5a
#include <stm32f10x_gpio.h>
#include <stm32f10x_usart.h>
#include "f_rtty.h"
#include "config.h"
#include "locator.h"
#define GREEN GPIO_Pin_7
#define RED GPIO_Pin_8
/*
int main(void) {
system_init();
delay_init();
init_timer(1000);
printf("I2C Init\n");
i2c_init();
si5351_test();
}
*/
/*
int main_bmp280(void)
{
//initialise_monitor_handles();
system_init();
delay_init();
//printf("I2C Init\n");
i2c_init();
bmp280 bmp280_dev;
bmp280_dev.port = &DEFAULT_I2C_PORT;
bmp280_dev.addr = BMP280_I2C_ADDRESS_1;
bmp280_params_t bmp280_params = {
.mode = BMP280_MODE_NORMAL,
.filter = BMP280_FILTER_16,
.oversampling_pressure = BMP280_ULTRA_HIGH_RES,
.oversampling_temperature = BMP280_ULTRA_HIGH_RES,
.oversampling_humidity = BMP280_ULTRA_HIGH_RES,
.standby = BMP280_STANDBY_250,
};
//printf("BMP280 Init\n");
char *test = "gg11";
//printf("test1: %s\n", test);
int test2 = 1234;
//printf("test2: %d\n", test2);
bool bmp280_init_success = bmp280_init(&bmp280_dev, &bmp280_params);
if (bmp280_init_success) {
//printf("BMP280 Init success\n");
} else {
//printf("BMP280 Init failure\n");
}
int32_t temperature;
uint32_t pressure, humidity;
while (true) {
GPIO_ResetBits(GPIOB, RED);
//printf("Measuring...\n");
bmp280_read_fixed(&bmp280_dev, &temperature, &pressure, &humidity);
//printf("----\n");
//printf("Temp: %d\n", temperature);
//printf("Pressure: %d\n", pressure);
//printf("Humidity: %d\n", humidity);
_delay_ms(1000);
GPIO_SetBits(GPIOB, RED);
_delay_ms(1000);
}
}
*/
/*
const unsigned char test = 0; // 0 - normal, 1 - short frame only cunter, height, flag
char callsign[15] = {RTTY_CALLSIGN};
char rtty_comment[25] = {RTTY_COMMENT};
unsigned int send_cun; //frame counter
char status[2] = {'N'};
//GPSEntry gpsData;
int8_t si4032_temperature;
uint16_t voltage;
volatile int adc_bottom = 2000;
unsigned int led_timeout = 600 * RTTY_SPEED; // Approx. 10 minutes
volatile uint8_t led_enabled = 1; // Flag to disable LEDs after a timeout
volatile char flaga = 0;
uint16_t CRC_rtty = 0x12ab; //checksum
char buffer[200];
char locator[13];
volatile unsigned char pun = 0;
volatile unsigned int cun = 10;
volatile unsigned char tx_on = 0;
volatile unsigned int tx_on_delay;
volatile unsigned char tx_enable = 0;
rttyStates send_rtty_status = rttyZero;
volatile char *rtty_buf;
volatile uint16_t button_pressed = 0;
volatile uint8_t disable_armed = 0;
void collect_telemetry_data(void);
void send_rtty_packet(void);
uint16_t gps_CRC16_checksum(char *string);
void send_aprs_packet(void);
void send_morse_message(void);
*/
/**
* GPS data processing
*/
/*
void USART1_IRQHandler(void)
{
if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) {
//ubxg6010_handle_incoming_byte((uint8_t) USART_ReceiveData(USART1));
} else if (USART_GetITStatus(USART1, USART_IT_ORE) != RESET) {
USART_ReceiveData(USART1);
} else {
USART_ReceiveData(USART1);
}
}
volatile int ready = 0;
volatile int gen = 1;
volatile int counter = 0;
volatile int tone = 0;
volatile uint16_t freq = 100;
volatile int ledstate = 0;
*/
/*
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) {
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
if (ready) {
if (gen) {
GPIO_ResetBits(GPIOB, radioSDIpin); // Low will TX at carrier + deviation
} else {
GPIO_SetBits(GPIOB, radioSDIpin); // High will TX at carrier - deviation
}
gen = !gen;
uint16_t speed = (tone + 1) * 600 * 2;
counter = (counter + 1) % speed;
if (counter == 0) {
tone = (tone + 1) % 4;
init_timer(speed);
}
}
if (counter == 0) {
freq += 100;
//mod_timer_set_freq(freq);
//radio_set_tx_frequency(434.250 + ((float) freq) / 1000000);
if (freq >= 5000) {
freq = 100;
}
if (ledstate) {
GPIO_SetBits(GPIOB, GREEN);
} else {
GPIO_ResetBits(GPIOB, GREEN);
}
ledstate = !ledstate;
}
counter = (counter + 1) % 1000;
*/
/* if (aprs_is_active()){
aprs_timer_handler();
} else {
if (ALLOW_DISABLE_BY_BUTTON){
if (ADCVal[1] > adc_bottom){
button_pressed++;
if (button_pressed > (RTTY_SPEED / 3)){
disable_armed = 1;
GPIO_SetBits(GPIOB, RED);
GPIO_SetBits(GPIOB, GREEN);
}
} else {
if (disable_armed){
GPIO_SetBits(GPIOA, GPIO_Pin_12);
}
button_pressed = 0;
}
if (button_pressed == 0) {
adc_bottom = ADCVal[1] * 1.1; // dynamical reference for power down level
}
}
if (tx_on) {
send_rtty_status = send_rtty((char *) rtty_buf);
if (!disable_armed){
if (send_rtty_status == rttyEnd) {
if (led_enabled) GPIO_SetBits(GPIOB, RED);
if (*(++rtty_buf) == 0) {
tx_on = 0;
tx_on_delay = TX_DELAY / (1000/RTTY_SPEED);
tx_enable = 0;
radio_disable_tx();
}
} else if (send_rtty_status == rttyOne) {
radio_rw_register(0x73, RTTY_DEVIATION, 1);
if (led_enabled) GPIO_SetBits(GPIOB, RED);
} else if (send_rtty_status == rttyZero) {
radio_rw_register(0x73, 0x00, 1);
if (led_enabled) GPIO_ResetBits(GPIOB, RED);
}
}
}
if (!tx_on && --tx_on_delay == 0) {
tx_enable = 1;
tx_on_delay--;
}
if (--cun == 0) {
if (pun) {
if (led_enabled) GPIO_ResetBits(GPIOB, GREEN);
pun = 0;
} else {
if (flaga & 0x80) {
if (led_enabled) GPIO_SetBits(GPIOB, GREEN);
}
pun = 1;
}
cun = 200;
}
}
if (!LED_ENABLED && led_enabled && !--led_timeout) led_enabled = 0;
}
}
*/
/*
void TIM1_BRK_TIM15_IRQHandler(void)
{
if (TIM_GetITStatus(TIM15, TIM_IT_CC2) != RESET) {
TIM_ClearITPendingBit(TIM15, TIM_IT_CC2);
if (ledstate) {
GPIO_SetBits(GPIOB, GREEN);
} else {
GPIO_ResetBits(GPIOB, GREEN);
}
ledstate = !ledstate;
}
}
*/
/*
int old_main(void)
{
// initialise_monitor_handles();
#ifdef DEBUG
debug();
#endif
system_init();
init_port();
init_timer(1000);
delay_init();
ubxg6010_init();
if (led_enabled) GPIO_SetBits(GPIOB, RED);
// USART_SendData(USART3, 0xc);
printf("main!\n");
deinit_usart_debug();
i2c_init();
radio_soft_reset();
// setting RTTY TX frequency
//radio_set_tx_frequency(434.250);
// setting TX power
radio_rw_register(0x6D, 00 | (TX_POWER & 0x0007), 1);
// initial RTTY modulation
radio_rw_register(0x71, 0x00, 1);
// Temperature Value Offset
radio_rw_register(0x13, 0xF0, 1);
// Temperature Sensor Calibration
radio_rw_register(0x12, 0x00, 1);
// ADC configuration
radio_rw_register(0x0f, 0x80, 1);
rtty_buf = buffer;
tx_on = 0;
tx_enable = 1;
uint8_t rtty_before_aprs_left = RTTY_TO_APRS_RATIO;
uint8_t morse_countdown = RTTY_TO_MORSE_RATIO;
radio_set_tx_frequency(434.250);
//_delay_ms(2);
//_delay_ms(2);
// The frequency deviation can be calculated: Fd = 625 Hz x fd[8:0].
// Zero disables deviation between 0/1 bits
radio_rw_register(0x72, 1, 1);
// The frequency offset can be calculated as Offset = 156.25 Hz x (hbsel + 1) x fo[7:0]. fo[9:0] is a twos complement value. fo[9] is the sign bit.
// For 70cm band hbsel is 1, so offset step is 312.5 Hz
radio_rw_register(0x73, 0, 1);
radio_rw_register(0x74, 0, 1);
// Direct Async Mode with OOK modulation
//radio_rw_register(0x71, 0b00010001, 1);
// Direct Async Mode with FSK modulation
radio_rw_register(0x71, 0b00010010, 1);
//radio_enable_tx();
spi_deinit();
// USART interrupts interfere with direct mode transmission
USART_Cmd(USART1, DISABLE);
uint16_t mark = 1000000 / 1200 / 2;
uint16_t space = 1000000 / 2200 / 2;
uint16_t iter = 0;
//GPIO_SetBits(GPIOC, radioNSELpin);
//init_mod_timer(freq);
// ready = 1;
// FSK example
while (1) {
// NVIC_SystemLPConfig(NVIC_LP_SEVONPEND, DISABLE);
//__WFI();
GPIO_SetBits(GPIOB, RED);
_delay_ms(500);
GPIO_ResetBits(GPIOB, RED);
_delay_ms(500);
//printf("freq: %d\n", freq);
}
// FSK example with frequency offset
while (1) {
for (int i = 0; i < 1000; i++) {
spi_init();
radio_rw_register(0x73, 0, 1);
spi_deinit();
GPIO_SetBits(GPIOB, RED);
GPIO_SetBits(GPIOB, radioSDIpin); // High will TX at carrier - deviation
_delay_ms(500);
GPIO_ResetBits(GPIOB, RED);
GPIO_ResetBits(GPIOB, radioSDIpin); // Low will TX at carrier + deviation
_delay_ms(500);
spi_init();
radio_rw_register(0x73, 1, 1);
spi_deinit();
GPIO_SetBits(GPIOB, RED);
GPIO_SetBits(GPIOB, radioSDIpin); // High will TX at carrier - deviation
_delay_ms(500);
GPIO_ResetBits(GPIOB, RED);
GPIO_ResetBits(GPIOB, radioSDIpin); // High will TX at carrier + deviation
_delay_ms(500);
}
for (int i = 0; i < 1000; i++) {
//GPIO_SetBits(GPIOB, RED);
GPIO_SetBits(GPIOB, radioSDIpin);
_delay_us(250, 0);
//GPIO_ResetBits(GPIOB, RED);
GPIO_ResetBits(GPIOB, radioSDIpin);
_delay_us(250, 0);
}
}
// OOK example
while (1) {
GPIO_SetBits(GPIOB, RED);
GPIO_SetBits(GPIOB, radioSDIpin);
_delay_ms(500);
GPIO_ResetBits(GPIOB, RED);
GPIO_ResetBits(GPIOB, radioSDIpin); // OOK carrier TX is on when SDI is low
_delay_ms(500);
}
/* if (tx_on == 0 && tx_enable) {
if (rtty_before_aprs_left){
if (SEND_MORSE && !--morse_countdown) {
send_morse_message();
morse_countdown = RTTY_TO_MORSE_RATIO;
}
if (SEND_RTTY) send_rtty_packet();
else _delay_ms(TX_DELAY);
rtty_before_aprs_left--;
} else {
rtty_before_aprs_left = RTTY_TO_APRS_RATIO;
if (SEND_APRS) send_aprs_packet();
}
} else {
NVIC_SystemLPConfig(NVIC_LP_SEVONPEND, DISABLE);
__WFI();
}
}
}
*/
/*
void collect_telemetry_data(void)
{
si4032_temperature = radio_read_temperature();
voltage = ADCVal[0] * 600 / 4096;
ublox_get_last_data(&gpsData);
if (gpsData.fix >= 3) flaga |= 0x80;
else flaga &= ~0x80;
if (RTTY_WWL || SEND_MORSE_WWL)
longlat2locator(gpsData.lon_raw, gpsData.lat_raw, locator);
}
void send_rtty_packet(void)
{
start_bits = RTTY_PRE_START_BITS;
collect_telemetry_data();
uint8_t lat_d = (uint8_t) abs(gpsData.lat_raw / 10000000);
uint32_t lat_fl = (uint32_t) abs(abs(gpsData.lat_raw) - lat_d * 10000000) / 1000;
uint8_t lon_d = (uint8_t) abs(gpsData.lon_raw / 10000000);
uint32_t lon_fl = (uint32_t) abs(abs(gpsData.lon_raw) - lon_d * 10000000) / 1000;
int packetLength = sprintf(buffer, "$$$$%s,%d", callsign, send_cun);
if (SEND_RTTY_TIME)
packetLength += sprintf(buffer + packetLength, ",%02u:%02u:%02u", gpsData.hours, gpsData.minutes,
gpsData.seconds);
if (SEND_RTTY_LATLON)
packetLength += sprintf(buffer + packetLength, ",%s%u.%04lu,%s%u.%04lu",
gpsData.lat_raw < 0 ? "-" : "", lat_d, lat_fl,
gpsData.lon_raw < 0 ? "-" : "", lon_d, lon_fl);
if (SEND_RTTY_HEIGHT)
packetLength += sprintf(buffer + packetLength, ",%ld", (gpsData.alt_raw / 1000));
if (SEND_RTTY_SPEED)
packetLength += sprintf(buffer + packetLength, ",%ld", gpsData.speed_raw);
if (SEND_RTTY_MESSAGE)
packetLength += sprintf(buffer + packetLength, ",%s", RTTY_WWL ? locator : rtty_comment);
if (SEND_RTTY_TEMPERATURE)
packetLength += sprintf(buffer + packetLength, ",%d", si4032_temperature);
if (SEND_RTTY_VOLTAGE)
packetLength += sprintf(buffer + packetLength, ",%d.%02d", voltage / 100, voltage - voltage / 100 * 100);
if (SEND_RTTY_SATELLITES)
packetLength += sprintf(buffer + packetLength, ",%d", gpsData.sats_raw);
if (SEND_RTTY_GPSDATA)
packetLength += sprintf(buffer + packetLength, ",%d,%d,%02x",
gpsData.ok_packets,
gpsData.bad_packets,
flaga);
CRC_rtty = gps_CRC16_checksum(buffer + 4);
sprintf(buffer + packetLength, "*%04X\n", CRC_rtty & 0xffff);
rtty_buf = buffer;
radio_enable_tx();
tx_on = 1;
send_cun++;
}
uint16_t gps_CRC16_checksum(char *string)
{
uint16_t crc = 0xffff;
char i;
while (*(string) != 0) {
crc = crc ^ (*(string++) << 8);
for (i = 0; i < 8; i++) {
if (crc & 0x8000)
crc = (uint16_t) ((crc << 1) ^ 0x1021);
else
crc <<= 1;
}
}
return crc;
}
void send_aprs_packet(void)
{
radio_enable_tx();
collect_telemetry_data();
USART_Cmd(USART1, DISABLE);
aprs_send_position(gpsData, si4032_temperature, voltage);
USART_Cmd(USART1, ENABLE);
radio_disable_tx();
}
void send_morse_message(void)
{
tx_enable = 0;
collect_telemetry_data();
int messageLength = sprintf(buffer, "%s", MORSE_PREFIX);
if (SEND_MORSE_WWL)
messageLength += sprintf(buffer + messageLength, " IN %s", locator);
if (SEND_MORSE_HEIGHT)
messageLength += sprintf(buffer + messageLength, " ASL %ld", (gpsData.alt_raw / 1000));
if (SEND_MORSE_VOLTAGE)
messageLength += sprintf(buffer + messageLength, " BAT %d.%02d", voltage / 100, voltage - voltage / 100 * 100);
messageLength += sprintf(buffer + messageLength, "%s", MORSE_SUFFIX);
// Set CW offset
radio_rw_register(0x73, 1, 1);
sendMorse(buffer);
_delay_ms(2000);
tx_enable = 1;
}
#ifdef DEBUG
void assert_failed(uint8_t* file, uint32_t line)
{
while (1);
}
#endif
*/