RS-tracker/dfm/dfm06.c

911 wiersze
23 KiB
C

/*
*
* DFM-06 und DFM-09 haben unterschiedliche Polaritaet bzw. Manchester-Varianten
* DFM-06 hat Kanaele 0..6 (anfangs nur 0..5)
* DFM-09 hat Kanaele 0..A
* Ausnahme: erste DFM-09-Versionen senden wie DFM-06
*
* Optionen:
* -v, -vv verbose/velocity, SN
* -r, -R raw frames
* -i invertiert Signal (DFM-06 / DFM-09)
* -b alternative Demodulation
* --avg moving average
* --ecc Hamming Error Correction
*/
#include <stdio.h>
#include <string.h>
//#include <math.h>
#include <stdlib.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
typedef unsigned char ui8_t;
typedef unsigned int ui32_t;
typedef struct {
int frnr;
int sonde_typ;
ui32_t SN6;
ui32_t SN9;
int week; int gpssec;
int jahr; int monat; int tag;
int std; int min; float sek;
double lat; double lon; double alt;
double dir; double horiV; double vertV;
} gpx_t;
gpx_t gpx;
char dat_str[9][13+1];
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 0, // rohe Frames
option_inv = 0, // invertiert Signal
option_auto = 0,
option_avg = 0, // moving average
option_b = 0,
option_ecc = 0,
wavloaded = 0;
int start = 0;
/* -------------------------------------------------------------------------- */
// option_b: exakte Baudrate wichtig!
// eventuell in header ermittelbar
#define BAUD_RATE 2500
int sample_rate = 0, bits_sample = 0, channels = 0;
float samples_per_bit = 0;
int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
int read_wav_header(FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
samples_per_bit = sample_rate/(float)BAUD_RATE;
fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit);
return 0;
}
#define EOF_INT 0x1000000
#define LEN_movAvg 3
int movAvg[LEN_movAvg];
unsigned long sample_count = 0;
int read_signed_sample(FILE *fp) { // int = i32_t
int byte, i, sample, s=0; // EOF -> 0x1000000
for (i = 0; i < channels; i++) {
// i = 0: links bzw. mono
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) sample = byte;
if (bits_sample == 16) {
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) sample += byte << 8;
}
}
if (bits_sample == 8) s = sample-128; // 8bit: 00..FF, centerpoint 0x80=128
if (bits_sample == 16) s = (short)sample;
if (option_avg) {
movAvg[sample_count % LEN_movAvg] = s;
s = 0;
for (i = 0; i < LEN_movAvg; i++) s += movAvg[i];
s = (s+0.5) / LEN_movAvg;
}
sample_count++;
return s;
}
int par=1, par_alt=1;
int read_bits_fsk(FILE *fp, int *bit, int *len) {
static int sample;
int n;
float l;
n = 0;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
par_alt = par;
par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
n++;
} while (par*par_alt > 0);
l = (float)n / samples_per_bit;
*len = (int)(l+0.5);
if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1
else *bit = (1-par_alt)/2; // sdr#<rev1381?, invers: unten 1, oben -1
// *bit = (1+inv*par_alt)/2; // ausser inv=0
/* Y-offset ? */
return 0;
}
int bitstart = 0;
double bitgrenze = 0;
unsigned long scount = 0;
int read_rawbit(FILE *fp, int *bit) {
int sample;
int sum;
sum = 0;
if (bitstart) {
scount = 0; // eigentlich scount = 1
bitgrenze = 0; // oder bitgrenze = -1
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
int read_rawbit2(FILE *fp, int *bit) {
int sample;
int sum;
sum = 0;
if (bitstart) {
scount = 0; // eigentlich scount = 1
bitgrenze = 0; // oder bitgrenze = -1
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum -= sample;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
float *wc = NULL;
int read_rawbit3(FILE *fp, int *bit) {
int sample;
int n;
float sum;
sum = 0;
n = 0;
if (bitstart) {
n = 1; // sample*wc[0] ?
scount = 1; // (sample_count overflow/wrap-around)
bitgrenze = 0; // d.h. bitgrenze = sample_count-1 (?)
bitstart = 0;
}
bitgrenze += 2*samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample*wc[n];
n++;
scount++;
} while (scount < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
/* -------------------------------------------------------------------------- */
//#define BITS (2*8) // 16
#define HEADLEN 32 // HEADLEN+HEADOFS=32 <= strlen(header)
#define HEADOFS 0
char header[] = "01100101011001101010010110101010";
char buf[HEADLEN+1] = "xxxxxxxxxx\0";
int bufpos = -1;
#define BITFRAME_LEN 280
#define RAWBITFRAME_LEN (BITFRAME_LEN*2)
#define FRAMESTART (HEADOFS+HEADLEN)
char frame_rawbits[RAWBITFRAME_LEN+8] = "01100101011001101010010110101010"; //->"0100010111001111";
char frame_bits[BITFRAME_LEN+4];
void inc_bufpos() {
bufpos = (bufpos+1) % HEADLEN;
}
char cb_inv(char c) {
if (c == '0') return '1';
if (c == '1') return '0';
return c;
}
// Gefahr bei Manchester-Codierung: inverser Header wird leicht fehl-erkannt
// da manchester1 und manchester2 nur um 1 bit verschoben
int compare2() {
int i, j;
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break;
j--;
i++;
}
if (i == HEADLEN) return 1;
if (option_auto) {
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != cb_inv(header[HEADOFS+HEADLEN-1-i])) break;
j--;
i++;
}
if (i == HEADLEN) return -1;
}
return 0;
}
// manchester1 1->10,0->01: 1.bit
// manchester2 0->10,1->01: 2.bit
void manchester1(char* frame_rawbits, char *frame_bits, int pos) {
int i, c, out, buf;
char bit, bits[2];
c = 0;
for (i = 0; i < pos/2; i++) { // -16
bits[0] = frame_rawbits[2*i];
bits[1] = frame_rawbits[2*i+1];
if ((bits[0] == '0') && (bits[1] == '1')) { bit = '0'; out = 1; }
else
if ((bits[0] == '1') && (bits[1] == '0')) { bit = '1'; out = 1; }
else { //
if (buf == 0) { c = !c; out = 0; buf = 1; }
else { bit = 'x'; out = 1; buf = 0; }
}
if (out) frame_bits[i] = bit;
}
}
/* -------------------------------------------------------------------------- */
#define B 8 // codeword: 8 bit
#define S 4 // davon 4 bit data
#define HEAD 0 // 16 bit
#define CONF (16+0) // 56 bit
#define DAT1 (16+56) // 104 bit
#define DAT2 (16+160) // 104 bit
// frame: 280 bit
ui8_t H[4][8] = // Parity-Check
{{ 0, 1, 1, 1, 1, 0, 0, 0},
{ 1, 0, 1, 1, 0, 1, 0, 0},
{ 1, 1, 0, 1, 0, 0, 1, 0},
{ 1, 1, 1, 0, 0, 0, 0, 1}};
ui8_t He[8] = { 0x7, 0xB, 0xD, 0xE, 0x8, 0x4, 0x2, 0x1}; // Spalten von H:
// 1-bit-error-Syndrome
ui8_t hamming_conf[ 7*B]; // 7*8=56
ui8_t hamming_dat1[13*B]; // 13*8=104
ui8_t hamming_dat2[13*B];
ui8_t block_conf[ 7*S]; // 7*4=28
ui8_t block_dat1[13*S]; // 13*4=52
ui8_t block_dat2[13*S];
ui32_t bits2val(ui8_t *bits, int len) { // big endian
int j;
ui32_t val;
if ((len < 0) || (len > 32)) return -1;
val = 0;
for (j = 0; j < len; j++) {
val |= (bits[j] << (len-1-j));
}
return val;
}
void deinterleave(char *str, int L, ui8_t *block) {
int i, j;
for (j = 0; j < B; j++) { // L = 7, 13
for (i = 0; i < L; i++) {
if (str[L*j+i] >= 0x30 && str[L*j+i] <= 0x31) {
block[B*i+j] = str[L*j+i] - 0x30; // ASCII -> bit
}
}
}
}
int check(ui8_t code[8]) {
int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt,
ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser,
ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision.
int ret=0;
for (i = 0; i < 4; i++) { // S = 4
syndrom[i] = 0;
for (j = 0; j < 8; j++) { // B = 8
syndrom[i] ^= H[i][j] & code[j];
}
}
synval = bits2val(syndrom, 4);
if (synval) {
ret = -1;
for (j = 0; j < 8; j++) { // 1-bit-error
if (synval == He[j]) { // reicht auf databits zu pruefen, d.h.
ret = j+1; // (systematischer Code) He[0..3]
break;
}
}
}
else ret = 0;
if (ret > 0) code[ret-1] ^= 0x1;
return ret;
}
int hamming(ui8_t *ham, int L, ui8_t *sym) {
int i, j;
int ret = 0; // L = 7, 13
for (i = 0; i < L; i++) { // L * 2 nibble (data+parity)
if (option_ecc) ret |= check(ham+B*i);
for (j = 0; j < S; j++) { // systematic: bits 0..S-1 data
sym[S*i+j] = ham[B*i+j];
}
}
return ret;
}
char nib2chr(ui8_t nib) {
char c = '_';
if (nib < 0x10) {
if (nib < 0xA) c = 0x30 + nib;
else c = 0x41 + nib-0xA;
}
return c;
}
int dat_out(ui8_t *dat_bits) {
int i, ret = 0;
static int fr_id;
// int jahr = 0, monat = 0, tag = 0, std = 0, min = 0;
int frnr = 0;
int msek = 0;
int lat = 0, lon = 0, alt = 0;
int nib;
int dvv; // signed/unsigned 16bit
fr_id = bits2val(dat_bits+48, 4);
if (fr_id >= 0 && fr_id <= 8) {
for (i = 0; i < 13; i++) {
nib = bits2val(dat_bits+4*i, 4);
dat_str[fr_id][i] = nib2chr(nib);
}
dat_str[fr_id][13] = '\0';
}
if (fr_id == 0) {
start = 1;
frnr = bits2val(dat_bits+24, 8);
gpx.frnr = frnr;
}
if (fr_id == 1) {
// 00..31: ? GPS-Sats in Sicht?
msek = bits2val(dat_bits+32, 16);
gpx.sek = msek/1000.0;
}
if (fr_id == 2) {
lat = bits2val(dat_bits, 32);
gpx.lat = lat/1e7;
dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein
gpx.horiV = dvv/1e2;
}
if (fr_id == 3) {
lon = bits2val(dat_bits, 32);
gpx.lon = lon/1e7;
dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned
gpx.dir = dvv/1e2;
}
if (fr_id == 4) {
alt = bits2val(dat_bits, 32);
gpx.alt = alt/1e2;
dvv = (short)bits2val(dat_bits+32, 16); // signed
gpx.vertV = dvv/1e2;
}
if (fr_id == 5) {
}
if (fr_id == 6) {
}
if (fr_id == 7) {
}
if (fr_id == 8) {
gpx.jahr = bits2val(dat_bits, 12);
gpx.monat = bits2val(dat_bits+12, 4);
gpx.tag = bits2val(dat_bits+16, 5);
gpx.std = bits2val(dat_bits+21, 5);
gpx.min = bits2val(dat_bits+26, 6);
}
ret = fr_id;
return ret;
}
#define SNbit 0x0100
int conf_out(ui8_t *conf_bits) {
int conf_id;
int ret = 0;
int val, hl;
static int chAbit, chA[2];
ui32_t SN6, SN9;
conf_id = bits2val(conf_bits, 4);
//if (conf_id > 6) gpx.SN6 = 0; //// gpx.sonde_typ & 0xF = 9; // SNbit?
if ((gpx.sonde_typ & 0xFF) < 9 && conf_id == 6) {
SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6
if ( SN6 == gpx.SN6 ) { // nur Nibble-Werte 0..9
gpx.sonde_typ = SNbit | 6;
ret = 6;
}
else {
gpx.sonde_typ = 0;
}
gpx.SN6 = SN6;
}
if (conf_id == 0xA) { // 0xACxxxxy
val = bits2val(conf_bits+8, 4*5);
hl = (val & 1) == 0;
chA[hl] = (val >> 4) & 0xFFFF;
chAbit |= 1 << hl;
if (chAbit == 3) { // DFM-09: Kanal A
SN9 = (chA[1] << 16) | chA[0];
if ( SN9 == gpx.SN9 ) {
gpx.sonde_typ = SNbit | 9;
ret = 9;
}
else {
gpx.sonde_typ = 0;
}
gpx.SN9 = SN9;
chAbit = 0;
}
}
return ret;
}
void print_gpx() {
int i, j;
if (start) {
if (option_raw == 2) {
for (i = 0; i < 9; i++) {
printf(" %s", dat_str[i]);
}
for (i = 0; i < 9; i++) {
for (j = 0; j < 13; j++) dat_str[i][j] = ' ';
}
}
else {
if (option_auto && option_verbose) printf("[%c] ", option_inv?'-':'+');
printf("[%3d] ", gpx.frnr);
printf("%4d-%02d-%02d ", gpx.jahr, gpx.monat, gpx.tag);
printf("%02d:%02d:%04.1f ", gpx.std, gpx.min, gpx.sek);
printf(" ");
printf("lat: %.6f ", gpx.lat);
printf("lon: %.6f ", gpx.lon);
printf("alt: %.1f ", gpx.alt);
printf(" vH: %5.2f ", gpx.horiV);
printf(" D: %5.1f ", gpx.dir);
printf(" vV: %5.2f ", gpx.vertV);
if (option_verbose && (gpx.sonde_typ & SNbit))
{
if ((gpx.sonde_typ & 0xFF) == 6) {
printf(" (ID%1d:%06X) ", gpx.sonde_typ & 0xF, gpx.SN6);
}
if ((gpx.sonde_typ & 0xFF) == 9) {
printf(" (ID%1d:%06u) ", gpx.sonde_typ & 0xF, gpx.SN9);
}
gpx.sonde_typ ^= SNbit;
}
}
printf("\n");
}
}
void print_frame() {
int i;
int nib = 0;
int frid = -1;
int ret0, ret1, ret2;
if (option_b < 2) {
manchester1(frame_rawbits, frame_bits, RAWBITFRAME_LEN);
}
deinterleave(frame_bits+CONF, 7, hamming_conf);
deinterleave(frame_bits+DAT1, 13, hamming_dat1);
deinterleave(frame_bits+DAT2, 13, hamming_dat2);
ret0 = hamming(hamming_conf, 7, block_conf);
ret1 = hamming(hamming_dat1, 13, block_dat1);
ret2 = hamming(hamming_dat2, 13, block_dat2);
if (option_raw == 1) {
for (i = 0; i < 7; i++) {
nib = bits2val(block_conf+S*i, S);
printf("%01X", nib & 0xFF);
}
if (option_ecc) {
if (ret0 == 0) printf(" [OK] ");
else if (ret0 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf(" ");
for (i = 0; i < 13; i++) {
nib = bits2val(block_dat1+S*i, S);
printf("%01X", nib & 0xFF);
}
if (option_ecc) {
if (ret1 == 0) printf(" [OK] ");
else if (ret1 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf(" ");
for (i = 0; i < 13; i++) {
nib = bits2val(block_dat2+S*i, S);
printf("%01X", nib & 0xFF);
}
if (option_ecc) {
if (ret2 == 0) printf(" [OK] ");
else if (ret2 > 0) printf(" [KO] ");
else printf(" [NO] ");
}
printf("\n");
}
else if (option_ecc) {
if (ret0 == 0 || ret0 > 0) {
conf_out(block_conf);
}
if (ret1 == 0 || ret1 > 0) {
frid = dat_out(block_dat1);
if (frid == 8) print_gpx();
}
if (ret2 == 0 || ret2 > 0) {
frid = dat_out(block_dat2);
if (frid == 8) print_gpx();
}
}
else {
conf_out(block_conf);
frid = dat_out(block_dat1);
if (frid == 8) print_gpx();
frid = dat_out(block_dat2);
if (frid == 8) print_gpx();
}
}
/* -------------------------------------------------------------------------- */
int main(int argc, char **argv) {
FILE *fp;
char *fpname;
int pos, i, j, bit, len;
int header_found = 0;
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, -vv\n");
fprintf(stderr, " -r, --raw\n");
fprintf(stderr, " -i, --invert\n");
fprintf(stderr, " --ecc (Hamming ECC)\n");
fprintf(stderr, " --avg (moving average)\n");
fprintf(stderr, " -b (alt. Demod.)\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
else if ( (strcmp(*argv, "-vv") == 0) ) {
option_verbose = 2;
}
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) {
option_raw = 2;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 0x1;
}
else if ( (strcmp(*argv, "--auto") == 0) ) {
option_auto = 1;
}
else if ( (strcmp(*argv, "--avg") == 0) ) {
option_avg = 1;
}
else if (strcmp(*argv, "-b" ) == 0) { option_b = 1; }
else if (strcmp(*argv, "-b2") == 0) { option_b = 2; }
else if (strcmp(*argv, "-b3") == 0) { option_b = 3; }
else if ( (strcmp(*argv, "--ecc") == 0) ) {
option_ecc = 1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
i = read_wav_header(fp);
if (i) {
fclose(fp);
return -1;
}
if (option_b > 2) {
wc = (float*)calloc( 2*(int)(samples_per_bit+1), sizeof(float));
for (i = 0; i < 2*samples_per_bit; i++) wc[i] = (i < samples_per_bit) ? 1 : -1; // wie -b2
//for (i = 0; i < 2*samples_per_bit; i++) wc[i] = sin(2*M_PI*i/(2*samples_per_bit));
//for (i = 0; i < 2*samples_per_bit; i++) wc[i] = cos(M_PI*i/(2*samples_per_bit));
}
for (i = 0; i < 9; i++) {
for (j = 0; j < 13; j++) dat_str[i][j] = ' ';
}
pos = FRAMESTART;
while (!read_bits_fsk(fp, &bit, &len)) {
if (len == 0) { // reset_frame();
if (pos > RAWBITFRAME_LEN-10) { // Problem wegen Interleaving
print_frame();//byte_count
header_found = 0;
pos = FRAMESTART;
}
//inc_bufpos();
//buf[bufpos] = 'x';
continue; // ...
}
for (i = 0; i < len; i++) {
inc_bufpos();
buf[bufpos] = 0x30 + bit; // Ascii
if (!header_found) {
header_found = compare2();
if (header_found < 0) option_inv ^= 0x1;
}
else {
frame_rawbits[pos] = 0x30 + bit; // Ascii
pos++;
if (pos == RAWBITFRAME_LEN) {
frame_rawbits[pos] = '\0';
print_frame();//FRAME_LEN
header_found = 0;
pos = FRAMESTART;
}
}
}
if (header_found && option_b==1) {
bitstart = 1;
while ( pos < RAWBITFRAME_LEN ) {
if (read_rawbit(fp, &bit) == EOF) break;
frame_rawbits[pos] = 0x30 + bit;
pos++;
}
frame_rawbits[pos] = '\0';
print_frame();//FRAME_LEN
header_found = 0;
pos = FRAMESTART;
}
if (header_found && option_b>=2) {
bitstart = 1;
if (pos%2) {
if (read_rawbit(fp, &bit) == EOF) break;
frame_rawbits[pos] = 0x30 + bit;
pos++;
}
manchester1(frame_rawbits, frame_bits, pos);
pos /= 2;
while ( pos < BITFRAME_LEN ) {
if (option_b==2) { if (read_rawbit2(fp, &bit) == EOF) break; }
else { if (read_rawbit3(fp, &bit) == EOF) break; }
frame_bits[pos] = 0x30 + bit;
pos++;
}
frame_bits[pos] = '\0';
print_frame();//FRAME_LEN
header_found = 0;
pos = FRAMESTART;
}
}
if (option_b > 2) {
if (wc) free(wc); wc = NULL;
}
fclose(fp);
return 0;
}