RS-tracker/imet/imet4iq.c

1658 wiersze
46 KiB
C

/*
* iMet-4 / iMet-1-RS
* Bell202 8N1
*
gcc imet4iq.c -lm -o imet4iq
./imet4iq --iq <fq> imet4_iq.wav
./imet4iq --imet1 --iq <fq> imet1_iq.wav
./imet4iq fm_audio.wav
# additional options:
# --lpFM FM lowpass filter
# --decFM FM decimate, reduce FM samples if imet1-IQ
# --dc frequency correction
# --json JSON output
# -r output raw bytes
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <complex.h>
#include <math.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
// optional JSON "version"
// (a) set global
// gcc -DVERSION_JSN [-I<inc_dir>] ...
#ifdef VERSION_JSN
#include "version_jsn.h"
#endif
// or
// (b) set local compiler option, e.g.
// gcc -DVER_JSN_STR=\"0.0.2\" ...
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef char i8_t;
typedef short i16_t;
typedef int i32_t;
#ifndef M_PI
#define M_PI (3.1415926535897932384626433832795)
#endif
#define _2PI (6.2831853071795864769252867665590)
#define LP_IQ 1
#define LP_FM 2
#define LP_IQFM 4
#define FM_DEC 2
#define FM_GAIN (0.8)
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 0, // rohe Frames
option_rawbits = 0,
option_b = 1,
option_json = 0;
/* ------------------------------------------------------------------------------------ */
typedef struct {
int sr; // sample_rate
int bps; // bits_sample bits/sample
int nch; // channels
int sel_ch; // select wav channel
} pcm_t;
int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
static
int read_wav_header(pcm_t *pcm, FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
int sample_rate = 0, bits_sample = 0, channels = 0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4) && strncmp(txt, "RF64", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if (pcm->sel_ch < 0 || pcm->sel_ch >= channels) pcm->sel_ch = 0; // default channel: 0
//fprintf(stderr, "channel-In : %d\n", pcm->sel_ch+1); // nur wenn nicht IQ
if (bits_sample != 8 && bits_sample != 16 && bits_sample != 32) return -1;
if (sample_rate == 900001) sample_rate -= 1;
pcm->sr = sample_rate;
pcm->bps = bits_sample;
pcm->nch = channels;
return 0;
}
typedef struct {
FILE *fp;
//
int sr; // sample_rate
int bps; // bits/sample
int nch; // channels
int ch; // select channel
//
float sps; // samples per symbol
float br; // baud rate
//
ui32_t sample_in;
ui32_t sample_fm;
ui32_t sc;
int M;
float *bufs;
float mv;
ui32_t mv_pos;
ui32_t pre_pos;
//
// IQ-data
int opt_iq;
int opt_iqdc;
float complex iqbuf[2]; // float complex *rot_iqbuf;
// dc offset
int opt_dc;
int locked;
double dc;
double Df;
double dDf;
float xsum;
// decimate
int opt_nolut; // default: LUT
int opt_IFmin;
int decM;
ui32_t sr_base;
ui32_t dectaps;
ui32_t sample_decX;
ui32_t lut_len;
ui32_t sample_decM;
float complex *decXbuffer;
float complex *decMbuf;
float complex *ex; // exp_lut
double xlt_fq;
// IF: lowpass
int opt_lp;
int lpIQ_bw;
float lpIQ_fbw;
int lpIQtaps; // ui32_t
float *ws_lpIQ0;
float *ws_lpIQ1;
float *ws_lpIQ;
float complex *lpIQ_buf;
// FM: lowpass
int lpFM_bw;
int lpFMtaps; // ui32_t
float *ws_lpFM;
float *lpFM_buf;
int opt_fmdec;
int decFM;
int sr_fm;
int opt_imet1;
} dsp_t;
static int f32read_sample(dsp_t *dsp, float *s) {
int i;
unsigned int word = 0;
short *b = (short*)&word;
float *f = (float*)&word;
for (i = 0; i < dsp->nch; i++) {
if (fread( &word, dsp->bps/8, 1, dsp->fp) != 1) return EOF;
if (i == dsp->ch) { // i = 0: links bzw. mono
//if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128
//if (bits_sample == 16) sint = (short)b;
if (dsp->bps == 32) {
*s = *f;
}
else {
if (dsp->bps == 8) { *b -= 128; }
*s = *b/128.0;
if (dsp->bps == 16) { *s /= 256.0; }
}
}
}
return 0;
}
typedef struct {
double sumIQx;
double sumIQy;
float avgIQx;
float avgIQy;
float complex avgIQ;
ui32_t cnt;
ui32_t maxcnt;
ui32_t maxlim;
} iq_dc_t;
static iq_dc_t IQdc;
static int f32read_csample(dsp_t *dsp, float complex *z) {
float x, y;
if (dsp->bps == 32) { //float32
float f[2];
if (fread( f, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = f[0];
y = f[1];
}
else if (dsp->bps == 16) { //int16
short b[2];
if (fread( b, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = b[0]/32768.0;
y = b[1]/32768.0;
}
else { // dsp->bps == 8 //uint8
ui8_t u[2];
if (fread( u, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = (u[0]-128)/128.0;
y = (u[1]-128)/128.0;
}
*z = x + I*y;
// IQ-dc removal optional
if (dsp->opt_iqdc) {
*z -= IQdc.avgIQ;
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
}
return 0;
}
static int f32read_cblock(dsp_t *dsp) {
int n;
int len;
float x, y;
ui8_t s[4*2*dsp->decM]; //uin8,int16,float32
ui8_t *u = (ui8_t*)s;
short *b = (short*)s;
float *f = (float*)s;
len = fread( s, dsp->bps/8, 2*dsp->decM, dsp->fp) / 2;
//for (n = 0; n < len; n++) dsp->decMbuf[n] = (u[2*n]-128)/128.0 + I*(u[2*n+1]-128)/128.0;
// u8: 0..255, 128 -> 0V
for (n = 0; n < len; n++) {
if (dsp->bps == 8) { //uint8
x = (u[2*n ]-128)/128.0;
y = (u[2*n+1]-128)/128.0;
}
else if (dsp->bps == 16) { //int16
x = b[2*n ]/32768.0;
y = b[2*n+1]/32768.0;
}
else { // dsp->bps == 32 //float32
x = f[2*n];
y = f[2*n+1];
}
// baseband: IQ-dc removal mandatory
dsp->decMbuf[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy);
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
}
return len;
}
// decimate lowpass
static float *ws_dec;
static double sinc(double x) {
double y;
if (x == 0) y = 1;
else y = sin(M_PI*x)/(M_PI*x);
return y;
}
static int lowpass_init(float f, int taps, float **pws) {
double *h, *w;
double norm = 0;
int n;
float *ws = NULL;
if (taps % 2 == 0) taps++; // odd/symmetric
if ( taps < 1 ) taps = 1;
h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1;
w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1;
ws = (float*)calloc( 2*taps+1, sizeof(float)); if (ws == NULL) return -1;
for (n = 0; n < taps; n++) {
w[n] = 7938/18608.0 - 9240/18608.0*cos(_2PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann
h[n] = 2*f*sinc(2*f*(n-(taps-1)/2));
ws[n] = w[n]*h[n];
norm += ws[n]; // 1-norm
}
for (n = 0; n < taps; n++) {
ws[n] /= norm; // 1-norm
}
for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; // duplicate/unwrap
*pws = ws;
free(h); h = NULL;
free(w); w = NULL;
return taps;
}
static float complex lowpass1a(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
double complex w = 0;
ui32_t n;
ui32_t S = taps-1 + (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S-n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return (float complex)w;
// symmetry: ws[n] == ws[taps-1-n]
}
//static __attribute__((optimize("-ffast-math"))) float complex lowpass()
static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0;
int n; // -Ofast
int S = taps - (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
static float complex lowpass2(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0; // -Ofast
int n;
int s = sample % taps; // lpIQ
int S1 = s;
int S1N = S1-taps;
int n0 = taps-s;
for (n = 0; n < n0; n++) {
w += buffer[S1+n]*ws[n];
}
for (n = n0; n < taps; n++) {
w += buffer[S1N+n]*ws[n];
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
static float re_lowpass(float buffer[], ui32_t sample, ui32_t taps, float *ws) {
float w = 0;
int n;
int S = taps - (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return w;
}
static
int f32_sample(dsp_t *dsp, float *out) {
float s = 0.0;
float s_fm = s;
float complex z, w, z0;
double gain = FM_GAIN;
ui32_t decFM = 1;
ui32_t _sample = dsp->sample_in;
int m = 0;
if (dsp->opt_fmdec) {
decFM = dsp->decFM;
_sample = dsp->sample_in * decFM;
}
for (m = 0; m < decFM; m++)
{
double t = _sample / (double)dsp->sr;
if (dsp->opt_iq)
{
if (dsp->opt_iq >= 5) {
ui32_t s_reset = dsp->dectaps*dsp->lut_len;
int j;
if ( f32read_cblock(dsp) < dsp->decM ) return EOF;
for (j = 0; j < dsp->decM; j++) {
if (dsp->opt_nolut) {
double _s_base = (double)(_sample*dsp->decM+j); // dsp->sample_dec
double f0 = dsp->xlt_fq*_s_base - dsp->Df*_s_base/(double)dsp->sr_base;
z = dsp->decMbuf[j] * cexp(f0*_2PI*I);
}
else {
z = dsp->decMbuf[j] * dsp->ex[dsp->sample_decM];
}
dsp->sample_decM += 1; if (dsp->sample_decM >= dsp->lut_len) dsp->sample_decM = 0;
dsp->decXbuffer[dsp->sample_decX] = z;
dsp->sample_decX += 1; if (dsp->sample_decX >= dsp->dectaps) dsp->sample_decX = 0;
}
if (dsp->decM > 1)
{
z = lowpass(dsp->decXbuffer, dsp->sample_decX, dsp->dectaps, ws_dec);
}
}
else if ( f32read_csample(dsp, &z) == EOF ) return EOF;
if (dsp->opt_dc && !dsp->opt_nolut) {
z *= cexp(-t*_2PI*dsp->Df*I);
}
// IF-lowpass
if (dsp->opt_lp & LP_IQ) {
dsp->lpIQ_buf[_sample % dsp->lpIQtaps] = z;
z = lowpass(dsp->lpIQ_buf, _sample+1, dsp->lpIQtaps, dsp->ws_lpIQ);
}
z0 = dsp->iqbuf[(_sample-1) & 1]; // z0 = dsp->rot_iqbuf[(_sample-1 + dsp->N_IQBUF) % dsp->N_IQBUF];
w = z * conj(z0);
s_fm = gain * carg(w)/M_PI;
dsp->iqbuf[_sample & 1] = z; // dsp->rot_iqbuf[_sample % dsp->N_IQBUF] = z;
s = s_fm; //opt_iq=1,6
}
else {
if (f32read_sample(dsp, &s) == EOF) return EOF;
s_fm = s; //opt_iq==0
}
// FM-lowpass
if (dsp->opt_lp & LP_FM) {
dsp->lpFM_buf[_sample % dsp->lpFMtaps] = s_fm;
if (m+1 == decFM) {
s_fm = re_lowpass(dsp->lpFM_buf, _sample+1, dsp->lpFMtaps, dsp->ws_lpFM);
if (dsp->opt_iq < 2 || dsp->opt_iq > 5) s = s_fm; //opt_iq==0,1,6
}
}
_sample += 1;
}
if (dsp->opt_dc && !dsp->opt_iq)
{
s -= dsp->dc*0.4;
}
dsp->bufs[dsp->sample_in % dsp->M] = s;
if (dsp->opt_dc)
{
float xneu, xalt;
xneu = dsp->bufs[ dsp->sample_in % dsp->M];
xalt = dsp->bufs[(dsp->sample_in+1) % dsp->M];
dsp->xsum += xneu - xalt;
if ((dsp->sample_in+dsp->pre_pos) % dsp->sr == 0)
{
double dc = dsp->xsum / (double)dsp->M;
dsp->dc = dc;
dsp->dDf = dsp->sr * dsp->dc / (2.0*FM_GAIN); // remaining freq offset
dsp->Df += dsp->dDf*0.5;
if (dsp->opt_iq) {
if (fabs(dsp->dDf) > 2e3) {
if (dsp->locked) {
dsp->locked = 0;
dsp->ws_lpIQ = dsp->ws_lpIQ0;
}
}
else {
if (dsp->locked == 0) {
dsp->locked = 1;
dsp->ws_lpIQ = dsp->ws_lpIQ1;
}
}
}
//DBG: if (dsp->opt_iq) fprintf(stderr, "Df: %+.3f\n", dsp->Df);
}
}
dsp->sample_in += 1;
*out = s;
return 0;
}
/* -------------------------------------------------------------------------- */
#define IF_SAMPLE_RATE 48000
#define IF_SAMPLE_RATE_MIN 32000
#define IF_TRANSITION_BW (4e3) // (min) transition width
#define FM_TRANSITION_BW (2e3) // (min) transition width
static
int init_buffers(dsp_t *dsp) {
int i, pos;
float b0, b1, b2, b;
double t;
int n, k;
// decimate
if (dsp->opt_iq >= 5)
{
int IF_sr = IF_SAMPLE_RATE; // designated IF sample rate
int decM = 1; // decimate M:1
int sr_base = dsp->sr;
float f_lp; // dec_lowpass: lowpass_bandwidth/2
float t_bw; // dec_lowpass: transition_bandwidth
int taps; // dec_lowpass: taps
if (dsp->opt_IFmin) IF_sr = IF_SAMPLE_RATE_MIN;
if (dsp->opt_imet1) IF_sr *= 2;
if (IF_sr > sr_base) IF_sr = sr_base;
if (IF_sr < sr_base) {
while (sr_base % IF_sr) IF_sr += 1;
decM = sr_base / IF_sr;
}
f_lp = (IF_sr+20e3)/(4.0*sr_base);
t_bw = (IF_sr-20e3)/*/2.0*/;
if (dsp->opt_imet1) {
f_lp = (IF_sr+80e3)/(4.0*sr_base);
t_bw = (IF_sr-80e3)/*/2.0*/;
}
if (dsp->opt_IFmin) {
t_bw = (IF_sr-12e3);
if (dsp->opt_imet1) {
f_lp = (IF_sr+60e3)/(4.0*sr_base);
t_bw = (IF_sr-60e3)/2/*2.0*/;
}
}
if (t_bw < 0) t_bw = 10e3;
t_bw /= sr_base;
taps = 4.0/t_bw; if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &ws_dec); // decimate lowpass
if (taps < 0) return -1;
dsp->dectaps = (ui32_t)taps;
dsp->sr_base = sr_base;
dsp->sr = IF_sr; // sr_base/decM
dsp->sps /= (float)decM;
dsp->decM = decM;
fprintf(stderr, "IF: %d\n", IF_sr);
fprintf(stderr, "dec: %d\n", decM);
}
if (dsp->opt_iq >= 5)
{
if (!dsp->opt_nolut)
{
// look up table, exp-rotation
int W = 2*8; // 16 Hz window
int d = 1; // 1..W , groesster Teiler d <= W von sr_base
int freq = (int)( dsp->xlt_fq * (double)dsp->sr_base + 0.5);
int freq0 = freq; // init
double f0 = freq0 / (double)dsp->sr_base; // init
for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr
if (dsp->sr_base % d == 0) break;
}
if (d == 0) d = 1; // d >= 1 ?
for (k = 0; k < W/2; k++) {
if ((freq+k) % d == 0) {
freq0 = freq + k;
break;
}
if ((freq-k) % d == 0) {
freq0 = freq - k;
break;
}
}
dsp->lut_len = dsp->sr_base / d;
f0 = freq0 / (double)dsp->sr_base;
dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex));
if (dsp->ex == NULL) return -1;
for (n = 0; n < dsp->lut_len; n++) {
t = f0*(double)n;
dsp->ex[n] = cexp(t*_2PI*I);
}
}
dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex));
if (dsp->decXbuffer == NULL) return -1;
dsp->decMbuf = calloc( dsp->decM+1, sizeof(float complex));
if (dsp->decMbuf == NULL) return -1;
}
// IF lowpass
if (dsp->opt_iq && (dsp->opt_lp & LP_IQ))
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 24e3/(float)dsp->sr/2.0; // default
if (dsp->lpIQ_bw) f_lp = dsp->lpIQ_bw/(float)dsp->sr/2.0;
taps = 4*dsp->sr/IF_TRANSITION_BW;
//if (dsp->sr > 80e3) taps = taps/2;
if (taps%2==0) taps++;
taps = lowpass_init(1.5*f_lp, taps, &dsp->ws_lpIQ0); if (taps < 0) return -1;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpIQ1); if (taps < 0) return -1;
dsp->lpIQ_fbw = f_lp;
dsp->lpIQtaps = taps;
dsp->lpIQ_buf = calloc( dsp->lpIQtaps+3, sizeof(float complex));
if (dsp->lpIQ_buf == NULL) return -1;
dsp->ws_lpIQ = dsp->ws_lpIQ1;
// dc-offset: if not centered, (acquisition) filter bw = lpIQ_bw + 4kHz
// coarse acquisition:
if (dsp->opt_dc) {
dsp->locked = 0;
dsp->ws_lpIQ = dsp->ws_lpIQ0;
}
}
// FM lowpass
if (dsp->opt_lp & LP_FM)
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 10e3/(float)dsp->sr; // default
if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr;
taps = 4*dsp->sr/FM_TRANSITION_BW; if (taps%2==0) taps++;
if (dsp->decFM > 1)
{
f_lp *= 2; //if (dsp->opt_iq >= 2 && dsp->opt_iq < 6) f_lp *= 2;
taps = taps/2;
}
if (dsp->sr > 100e3) taps = taps/2;
if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpFM); if (taps < 0) return -1;
dsp->lpFMtaps = taps;
dsp->lpFM_buf = calloc( dsp->lpFMtaps+3, sizeof(float)); // re_lowpass: size(float) (complex)lowpass: sizeof(float complex)
if (dsp->lpFM_buf == NULL) return -1;
}
memset(&IQdc, 0, sizeof(IQdc));
IQdc.maxlim = dsp->sr;
IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1
if (dsp->decM > 1) {
IQdc.maxlim *= dsp->decM;
IQdc.maxcnt *= dsp->decM;
}
dsp->sample_in = 0;
dsp->M = dsp->sps*32; // a) dec buffer , b) len average/dc
dsp->bufs = (float *)calloc( dsp->M+1, sizeof(float)); if (dsp->bufs == NULL) return -100;
if (dsp->opt_iq)
{
if (dsp->nch < 2) return -1;
}
return 0;
}
static
int free_buffers(dsp_t *dsp) {
if (dsp->bufs) { free(dsp->bufs); dsp->bufs = NULL; }
// decimate
if (dsp->opt_iq >= 5)
{
if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; }
if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; }
if (!dsp->opt_nolut) {
if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; }
}
if (ws_dec) { free(ws_dec); ws_dec = NULL; }
}
// IF lowpass
if (dsp->opt_iq && (dsp->opt_lp & LP_IQ))
{
if (dsp->ws_lpIQ0) { free(dsp->ws_lpIQ0); dsp->ws_lpIQ0 = NULL; }
if (dsp->ws_lpIQ1) { free(dsp->ws_lpIQ1); dsp->ws_lpIQ1 = NULL; }
if (dsp->lpIQ_buf) { free(dsp->lpIQ_buf); dsp->lpIQ_buf = NULL; }
}
// FM lowpass
if (dsp->opt_lp & LP_FM)
{
if (dsp->ws_lpFM) { free(dsp->ws_lpFM); dsp->ws_lpFM = NULL; }
if (dsp->lpFM_buf) { free(dsp->lpFM_buf); dsp->lpFM_buf = NULL; }
}
return 0;
}
/* ------------------------------------------------------------------------------------ */
// Bell202, 1200 baud (1200Hz/2200Hz), 8N1
#define BAUD_RATE 1200
#define BITS (10)
#define LEN_BITFRAME BAUD_RATE
#define LEN_BYTEFRAME (LEN_BITFRAME/BITS)
#define HEADLEN 30
typedef struct {
// GPS
int hour;
int min;
int sec;
float lat;
float lon;
int alt;
int sats;
float vH; float vD; float vV; // eGPS
// PTU
int frame;
float temp;
float pressure;
float humidity;
float batt;
// XDATA
char xdata[2*LEN_BYTEFRAME+1]; // xdata hex string: aux_str1#aux_str2...
char *paux;
//
int gps_valid;
int ptu_valid;
//
int jsn_freq; // freq/kHz (SDR)
} gpx_t;
gpx_t gpx;
char header[] = "1111111111111111111""10""10000000""1";
char buf[HEADLEN+1] = "x";
int bufpos = -1;
int bitpos;
ui8_t bitframe[LEN_BITFRAME+1] = { 0, 1, 0, 0, 0, 0, 0, 0, 0, 1};
ui8_t byteframe[LEN_BYTEFRAME+1];
int N, ptr;
float *buffer = NULL;
/* ------------------------------------------------------------------------------------ */
void inc_bufpos() {
bufpos = (bufpos+1) % HEADLEN;
}
int compare() {
int i=0, j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != header[HEADLEN-1-i]) break;
j--;
i++;
}
return i;
}
int bits2byte(ui8_t *bits) {
int i, d = 1, byte = 0;
if ( bits[0]+bits[1]+bits[2]+bits[3]+bits[4] // 1 11111111 1 (sync)
+bits[5]+bits[6]+bits[7]+bits[8]+bits[9] == 10 ) return 0xFFFF;
for (i = 1; i < BITS-1; i++) { // little endian
if (bits[i] == 1) byte += d;
else if (bits[i] == 0) byte += 0;
d <<= 1;
}
return byte & 0xFF;
}
int bits2bytes(ui8_t *bits, ui8_t *bytes, int len) {
int i;
int byte;
for (i = 0; i < len; i++) {
byte = bits2byte(bits+BITS*i);
bytes[i] = byte & 0xFF;
if (byte == 0xFFFF) break;
}
return i;
}
void print_rawbits(int len) {
int i;
for (i = 0; i < len; i++) {
if ((i % BITS == 1) || (i % BITS == BITS-1)) fprintf(stdout, " ");
fprintf(stdout, "%d", bitframe[i]);
}
fprintf(stdout, "\n");
}
/* -------------------------------------------------------------------------- */
int crc16poly = 0x1021; // CRC16-CCITT
int crc16(ui8_t bytes[], int len) {
int rem = 0x1D0F; // initial value
int i, j;
for (i = 0; i < len; i++) {
rem = rem ^ (bytes[i] << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
}
else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
return rem;
}
/* -------------------------------------------------------------------------- */
#define LEN_GPSePTU (18+20)
/*
standard frame:
01 02 (GPS) .. .. 01 04 (ePTU) .. ..
*/
#define SOH_01 0x01
#define PKT_PTU 0x01
#define PKT_GPS 0x02
#define PKT_XDATA 0x03
#define PKT_ePTU 0x04
#define PKT_eGPS 0x05
/*
PTU (enhanced) Data Packet (LSB)
offset bytes description
0 1 SOH = 0x01
1 1 PKT_ID = 0x01/0x04
2 2 PKT = packet number
4 3 P, mbs (P = n/100)
7 2 T, °C (T = n/100)
9 2 U, % (U = n/100)
11 1 Vbat, V (V = n/10)
12 2 Tint, °C (Tint = n/100)
14 2 Tpr, °C (Tpr = n/100)
16 2 Tu, °C (Tu = n/100)
12/18 2 CRC (16-bit)
packet size = 14/20 bytes
*/
#define pos_PCKnum 0x02 // 2 byte
#define pos_PTUprs 0x04 // 3 byte
#define pos_PTUtem 0x07 // 2 byte int
#define pos_PTUhum 0x09 // 2 byte
#define pos_PTUbat 0x0B // 1 byte
#define pos_PTUcrc 0x0C // 2 byte
#define pos_ePTUtint 0x0C // 2 byte
#define pos_ePTUtpr 0x0E // 2 byte
#define pos_ePTUtu 0x10 // 2 byte
#define pos_ePTUcrc 0x12 // 2 byte
int print_ePTU(int pos, ui8_t PKT_ID) {
int P, U;
short T;
int bat, pcknum;
int crc_val, crc; // 0x04: ePTU 0x01: PTU
int posPTUCRC = (PKT_ID == PKT_ePTU) ? pos_ePTUcrc : pos_PTUcrc;
if (PKT_ID != PKT_ePTU && PKT_ID != PKT_PTU) return -1;
crc_val = ((byteframe+pos)[posPTUCRC] << 8) | (byteframe+pos)[posPTUCRC+1];
crc = crc16(byteframe+pos, posPTUCRC); // len=pos
P = (byteframe+pos)[pos_PTUprs] | ((byteframe+pos)[pos_PTUprs+1]<<8) | ((byteframe+pos)[pos_PTUprs+2]<<16);
T = (byteframe+pos)[pos_PTUtem] | ((byteframe+pos)[pos_PTUtem+1]<<8);
U = (byteframe+pos)[pos_PTUhum] | ((byteframe+pos)[pos_PTUhum+1]<<8);
bat = (byteframe+pos)[pos_PTUbat];
pcknum = (byteframe+pos)[pos_PCKnum] | ((byteframe+pos)[pos_PCKnum+1]<<8);
fprintf(stdout, "[%d] ", pcknum);
fprintf(stdout, " P:%.2fmb ", P/100.0);
fprintf(stdout, " T:%.2f°C ", T/100.0);
fprintf(stdout, " U:%.2f%% ", U/100.0);
fprintf(stdout, " bat:%.1fV ", bat/10.0);
fprintf(stdout, " # ");
fprintf(stdout, " CRC: %04X ", crc_val);
fprintf(stdout, "- %04X ", crc);
if (crc_val == crc) {
fprintf(stdout, "[OK]");
gpx.ptu_valid = PKT_ID;
gpx.frame = pcknum;
gpx.pressure = P/100.0;
gpx.temp = T/100.0;
gpx.humidity = U/100.0;
gpx.batt = bat/10.0;
}
else {
fprintf(stdout, "[NO]");
gpx.ptu_valid = 0;
}
fprintf(stdout, "\n");
return (crc_val != crc);
}
/*
GPS (enhanced) Data Packet (LSB)
offset bytes description
0 1 SOH = 0x01
1 1 PKT_ID = 0x02/0x05
2 4 Latitude, +/- deg (float)
6 4 Longitude, +/- deg (float)
10 2 Altitude, meters (Alt = n-5000)
12 1 nSat (0 - 12)
13 4 velE m/s (float)
17 4 velN m/s (float)
21 4 velU m/s (float)
13/25 3 Time (hr,min,sec)
16/28 2 CRC (16-bit)
packet size = 18/30 bytes
*/
#define pos_GPSlat 0x02 // 4 byte float
#define pos_GPSlon 0x06 // 4 byte float
#define pos_GPSalt 0x0A // 2 byte int
#define pos_GPSsats 0x0C // 1 byte
#define pos_GPStim 0x0D // 3 byte
#define pos_GPScrc 0x10 // 2 byte
#define pos_eGPSvE 0x0D // 4 byte float
#define pos_eGPSvN 0x11 // 4 byte float
#define pos_eGPSvU 0x15 // 4 byte float
#define pos_eGPStim 0x19 // 3 byte
#define pos_eGPScrc 0x1C // 2 byte
int print_eGPS(int pos, ui8_t PKT_ID) {
float lat, lon;
float vE, vN, vU, vH, vD; // E,N,U, speed, dir/heading
int alt, sats;
int std, min, sek;
int crc_val, crc; // 0x02: GPS 0x05: eGPS
int posGPStim = (PKT_ID == PKT_GPS) ? pos_GPStim : pos_eGPStim;
int posGPSCRC = (PKT_ID == PKT_GPS) ? pos_GPScrc : pos_eGPScrc;
if (PKT_ID != PKT_GPS && PKT_ID != PKT_eGPS) return -1;
crc_val = ((byteframe+pos)[pos_GPScrc] << 8) | (byteframe+pos)[pos_GPScrc+1];
crc = crc16(byteframe+pos, pos_GPScrc); // len=pos
//lat = *(float*)(byteframe+pos+pos_GPSlat);
//lon = *(float*)(byteframe+pos+pos_GPSlon);
// //raspi: copy into (aligned) float
memcpy(&lat, byteframe+pos+pos_GPSlat, 4);
memcpy(&lon, byteframe+pos+pos_GPSlon, 4);
alt = ((byteframe+pos)[pos_GPSalt+1]<<8)+(byteframe+pos)[pos_GPSalt] - 5000;
sats = (byteframe+pos)[pos_GPSsats];
std = (byteframe+pos)[posGPStim+0];
min = (byteframe+pos)[posGPStim+1];
sek = (byteframe+pos)[posGPStim+2];
fprintf(stdout, "(%02d:%02d:%02d) ", std, min, sek);
fprintf(stdout, " lat: %.6f° ", lat);
fprintf(stdout, " lon: %.6f° ", lon);
fprintf(stdout, " alt: %dm ", alt);
fprintf(stdout, " sats: %d ", sats);
gpx.vH = gpx.vD = gpx.vV = 0;
if (PKT_ID == PKT_eGPS) {
memcpy(&vE, byteframe+pos+pos_eGPSvE, 4);
memcpy(&vN, byteframe+pos+pos_eGPSvN, 4);
memcpy(&vU, byteframe+pos+pos_eGPSvU, 4);
vH = sqrt(vE*vE+vN*vN);
vD = atan2(vE, vN) * 180.0 / M_PI;
if (vD < 0) vD += 360.0;
// TODO: TEST eGPS/vel
fprintf(stdout, " vH: %.1fm/s D: %.1f° vV: %.1fm/s ", vH, vD, vU);
}
fprintf(stdout, " # ");
fprintf(stdout, " CRC: %04X ", crc_val);
fprintf(stdout, "- %04X ", crc);
if (crc_val == crc) {
fprintf(stdout, "[OK]");
gpx.gps_valid = PKT_ID;
gpx.lat = lat;
gpx.lon = lon;
gpx.alt = alt;
gpx.sats = sats;
gpx.hour = std;
gpx.min = min;
gpx.sec = sek;
if (PKT_ID == PKT_eGPS) {
gpx.vH = vH;
gpx.vD = vD;
gpx.vV = vU;
}
}
else {
fprintf(stdout, "[NO]");
gpx.gps_valid = 0;
}
fprintf(stdout, "\n");
return (crc_val != crc);
}
/*
Extra Data Packet - XDATA
offset bytes description
0 1 SOH = 0x01
1 1 PKT_ID = 0x03
2 2 N = number of data bytes to follow
3+N 2 CRC (16-bit)
N=8, ID=0x01: ECC Ozonesonde (MSB)
3 1 Instrument_type = 0x01 (ID)
4 1 Instrument_number
5 2 Icell, uA (I = n/1000)
7 2 Tpump, °C (T = n/100)
9 1 Ipump, mA
10 1 Vbat, (V = n/10)
11 2 CRC (16-bit)
packet size = 12 bytes
//
ID=0x05: OIF411
ID=0x08: CFH (Cryogenic Frost-Point Hygrometer)
ID=0x19: COBALD (Compact Optical Backscatter Aerosol Detector)
*/
int print_xdata(int pos, ui8_t N) {
ui8_t InstrumentNum;
short Tpump;
unsigned short Icell, Ipump, Vbat;
int crc_val, crc;
int crc_len = 3+N;
crc_val = ((byteframe+pos)[crc_len] << 8) | (byteframe+pos)[crc_len+1];
crc = crc16(byteframe+pos, crc_len); // len=pos
fprintf(stdout, " XDATA ");
// (byteframe+pos)[2] = N
if (N == 8 && (byteframe+pos)[3] == 0x01)
{ // Ozonesonde 01 03 08 01 .. .. (MSB)
InstrumentNum = (byteframe+pos)[4];
Icell = (byteframe+pos)[5+1] | ((byteframe+pos)[5]<<8); // MSB
Tpump = (byteframe+pos)[7+1] | ((byteframe+pos)[7]<<8); // MSB
Ipump = (byteframe+pos)[9];
Vbat = (byteframe+pos)[10];
fprintf(stdout, " Icell:%.3fuA ", Icell/1000.0);
fprintf(stdout, " Tpump:%.2f°C ", Tpump/100.0);
fprintf(stdout, " Ipump:%dmA ", Ipump);
fprintf(stdout, " Vbat:%.1fV ", Vbat/10.0);
}
else {
int j;
fprintf(stdout, " (N=0x%02X)", N);
for (j = 0; j < N; j++) fprintf(stdout, " %02X", (byteframe+pos)[3+j]);
}
if (crc_val == crc && (gpx.paux-gpx.xdata)+2*(N+1) < 2*LEN_BYTEFRAME) {
// hex(xdata[2:3+N]) , strip [0103NN]..[CRC16] , '#'-separated
int j;
if (gpx.paux > gpx.xdata) {
*(gpx.paux) = '#';
gpx.paux += 1;
}
//exclude length (byteframe+pos)[2]=N (sprintf(gpx.paux, "%02X", (byteframe+pos)[2]); gpx.paux += 2;)
for (j = 0; j < N; j++) {
sprintf(gpx.paux, "%02X", (byteframe+pos)[3+j]);
gpx.paux += 2;
}
*(gpx.paux) = '\0';
}
fprintf(stdout, " # ");
fprintf(stdout, " CRC: %04X ", crc_val);
fprintf(stdout, "- %04X ", crc);
if (crc_val == crc) {
fprintf(stdout, "[OK]");
}
else {
fprintf(stdout, "[NO]");
}
fprintf(stdout, "\n");
return (crc_val != crc);
}
/* -------------------------------------------------------------------------- */
int print_frame(dsp_t *dsp, int len) {
int i;
int framelen;
int crc_err1 = 0,
crc_err2 = 0,
crc_err3 = 0;
int ofs = 0;
int out = 0;
if ( len < 2 || len > LEN_BYTEFRAME) return -1;
for (i = len; i < LEN_BYTEFRAME; i++) byteframe[i] = 0;
gpx.gps_valid = 0;
gpx.ptu_valid = 0;
framelen = bits2bytes(bitframe, byteframe, len);
if (option_rawbits)
{
print_rawbits(framelen*BITS);
}
else
{
if (option_raw) {
for (i = 0; i < framelen; i++) { // LEN_GPSePTU
fprintf(stdout, "%02X ", byteframe[i]);
}
fprintf(stdout, "\n");
out |= 8;
}
//else
{
ofs = 0;
gpx.xdata[0] = '\0';
gpx.paux = gpx.xdata;
while (ofs < framelen && byteframe[ofs] == SOH_01) // SOH = 0x01
{
ui8_t PKT_ID = byteframe[ofs+1];
if (PKT_ID == PKT_GPS || PKT_ID == PKT_eGPS) // GPS/eGPS Data Packet
{
int posGPSCRC = (PKT_ID == PKT_GPS) ? pos_GPScrc : pos_eGPScrc;
crc_err1 = print_eGPS(ofs, PKT_ID); // packet offset in byteframe
ofs += posGPSCRC+2;
out |= 1;
}
else if (PKT_ID == PKT_ePTU || PKT_ID == PKT_PTU) // ePTU/PTU Data Packet
{
int posPTUCRC = (PKT_ID == PKT_ePTU) ? pos_ePTUcrc : pos_PTUcrc;
crc_err2 = print_ePTU(ofs, PKT_ID); // packet offset in byteframe
ofs += posPTUCRC+2;
out |= 2;
}
else if (PKT_ID == PKT_XDATA) // Extra Data Packet
{
ui8_t N = byteframe[ofs+2];
if (N > 0 && ofs+2+N+2 < framelen)
{
crc_err3 = print_xdata(ofs, N); // packet offset in byteframe
ofs += N+3+2;
out |= 4;
}
else {
break;
}
}
else {
break;
}
}
// if (crc_err1==0 && crc_err2==0) { }
if (option_json) {
if (gpx.gps_valid && gpx.ptu_valid) // frameNb part of PTU-pck
{
char *ver_jsn = NULL;
fprintf(stdout, "{ \"type\": \"%s\"", "IMET");
fprintf(stdout, ", \"frame\": %d, \"id\": \"iMet\", \"datetime\": \"%02d:%02d:%02dZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %d, \"sats\": %d, \"temp\": %.2f, \"humidity\": %.2f, \"pressure\": %.2f, \"batt\": %.1f",
gpx.frame, gpx.hour, gpx.min, gpx.sec, gpx.lat, gpx.lon, gpx.alt, gpx.sats, gpx.temp, gpx.humidity, gpx.pressure, gpx.batt);
// TODO: TEST eGPS/vel
if (0 && gpx.gps_valid == PKT_eGPS) {
fprintf(stdout, ", \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f", gpx.vH, gpx.vD, gpx.vV );
}
if (gpx.xdata[0]) {
fprintf(stdout, ", \"aux\": \"%s\"", gpx.xdata );
}
if (gpx.jsn_freq > 0) {
fprintf(stdout, ", \"freq\": %d", gpx.jsn_freq );
}
// Reference time/position
fprintf(stdout, ", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec
fprintf(stdout, ", \"ref_position\": \"%s\"", "MSL" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid
#ifdef VER_JSN_STR
ver_jsn = VER_JSN_STR;
#endif
if (ver_jsn && *ver_jsn != '\0') fprintf(stdout, ", \"version\": \"%s\"", ver_jsn);
fprintf(stdout, " }\n");
}
}
if (out) fprintf(stdout, "\n");
fflush(stdout);
}
}
return 0;
}
/* -------------------------------------------------------------------------- */
double complex F1sum = 0;
double complex F2sum = 0;
int main(int argc, char *argv[]) {
FILE *fp;
char *fpname;
unsigned int sample_count;
int i;
int bit = 8, bit0 = 8;
int pos = 0, pos0 = 0;
double pos_bit = 0;
int header_found = 0;
double bitlen; // sample_rate/BAUD_RATE
int len;
double f1, f2;
double complex iw1, iw2;
int n;
double t = 0.0;
double tn = 0.0;
double x = 0.0;
double x0 = 0.0;
double complex X0 = 0;
double complex X = 0;
double xbit = 0.0;
float s = 0.0;
int bitbuf[3];
float lpIQ_bw = 16e3;
int option_iq = 0;
int option_lp = 0;
int option_dc = 0;
int option_decFM = 0;
int option_noLUT = 0;
int option_iqdc = 0;
int option_pcmraw = 0;
int option_min = 0;
int wavloaded = 0;
int sel_wavch = 0;
int k;
int cfreq = -1;
pcm_t pcm = {0};
dsp_t dsp = {0};
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " -r, --raw\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1;
}
else if ( (strcmp(*argv, "--rawbits") == 0) ) {
option_rawbits = 1;
}
else if ( (strcmp(*argv, "-b") == 0) ) {
option_b = 1;
}
else if ( (strcmp(*argv, "--iq") == 0) ) { // fq baseband -> IF (rotate from and decimate)
double fq = 0.0; // --iq <fq> , -0.5 < fq < 0.5
++argv;
if (*argv) fq = atof(*argv);
else return -1;
if (fq < -0.5) fq = -0.5;
if (fq > 0.5) fq = 0.5;
dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t)
option_iq = 6;
}
else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ lowpass
else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz
double bw = 0.0;
++argv;
if (*argv) bw = atof(*argv);
else return -1;
if (bw > 4.0 && bw < 256.0) lpIQ_bw = bw*1e3;
option_lp |= LP_IQ;
}
else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= LP_FM; } // FM lowpass
else if (strcmp(*argv, "--decFM") == 0) { // FM decimation
option_decFM = 2;
}
else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; }
else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; }
else if (strcmp(*argv, "--min") == 0) {
option_min = 1;
}
else if (strcmp(*argv, "--imet1") == 0) { dsp.opt_imet1 = 1; } // iMet-1-RS bw=64k
else if ( (strcmp(*argv, "--json") == 0) ) {
option_json = 1;
}
else if ( (strcmp(*argv, "--jsn_cfq") == 0) ) {
int frq = -1; // center frequency / Hz
++argv;
if (*argv) frq = atoi(*argv); else return -1;
if (frq < 300000000) frq = -1;
cfreq = frq;
}
else if (strcmp(*argv, "-") == 0) {
int sample_rate = 0, bits_sample = 0, channels = 0;
++argv;
if (*argv) sample_rate = atoi(*argv); else return -1;
++argv;
if (*argv) bits_sample = atoi(*argv); else return -1;
channels = 2;
if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) {
fprintf(stderr, "- <sr> <bs>\n");
return -1;
}
pcm.sr = sample_rate;
pcm.bps = bits_sample;
pcm.nch = channels;
option_pcmraw = 1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
if (option_iq == 0 && option_pcmraw) {
fclose(fp);
fprintf(stderr, "error: raw data not IQ\n");
return -1;
}
if (option_iq) sel_wavch = 0;
pcm.sel_ch = sel_wavch;
if (option_pcmraw == 0) {
k = read_wav_header(&pcm, fp);
if ( k < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
}
gpx.jsn_freq = 0;
if (cfreq > 0) {
int fq_kHz = (cfreq - dsp.xlt_fq*pcm.sr + 500)/1e3;
gpx.jsn_freq = fq_kHz;
}
// init dsp
//
dsp.fp = fp;
dsp.sr = pcm.sr;
dsp.bps = pcm.bps;
dsp.nch = pcm.nch;
dsp.ch = pcm.sel_ch;
dsp.br = (float)BAUD_RATE;
if (option_decFM) {
if (option_iq == 5) option_lp |= LP_IQFM;
else option_lp |= LP_FM;
if (dsp.sr > 60000) dsp.opt_fmdec = 1;
}
dsp.sps = (float)dsp.sr/dsp.br;
dsp.decFM = 1;
if (dsp.opt_fmdec) {
dsp.decFM = option_decFM;
while (dsp.sr % dsp.decFM > 0 && dsp.decFM > 1) dsp.decFM /= 2;
dsp.sps /= (float)dsp.decFM;
}
if (dsp.opt_imet1) {
if (lpIQ_bw < 60e3) lpIQ_bw = 80e3;
}
dsp.opt_iq = option_iq;
dsp.opt_iqdc = option_iqdc;
dsp.opt_lp = option_lp;
dsp.lpIQ_bw = lpIQ_bw; // IF lowpass bandwidth
dsp.lpFM_bw = 6e3; // FM audio lowpass
if (option_iq == 6) dsp.lpFM_bw = 6e3;
else if (option_iq == 5) dsp.lpFM_bw = 6e3;
dsp.opt_dc = option_dc;
dsp.opt_IFmin = option_min;
// LUT faster, however frequency correction after decimation
// LUT recommonded if decM > 2
//
if (option_noLUT && option_iq >= 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0;
init_buffers(&dsp); // free
dsp.sr_fm = dsp.sr/dsp.decFM;
bitlen = dsp.sr_fm/(double)BAUD_RATE;
f1 = 2200.0; // bit0: 2200Hz
f2 = 1200.0; // bit1: 1200Hz
iw1 = _2PI*I*f1;
iw2 = _2PI*I*f2;
N = 2*bitlen + 0.5;
buffer = calloc( N+1, sizeof(float)); if (buffer == NULL) return -1;
ptr = -1; sample_count = -1;
while (f32_sample(&dsp, &s) != EOF) {
ptr++; sample_count++;
if (ptr == N) ptr = 0;
buffer[ptr] = s;
n = bitlen;
t = sample_count / (double)dsp.sr_fm;
tn = (sample_count-n) / (double)dsp.sr_fm;
x = buffer[sample_count % N];
x0 = buffer[(sample_count - n + N) % N];
// f1
X0 = x0 * cexp(-tn*iw1); // alt
X = x * cexp(-t *iw1); // neu
F1sum += X - X0;
// f2
X0 = x0 * cexp(-tn*iw2); // alt
X = x * cexp(-t *iw2); // neu
F2sum += X - X0;
xbit = cabs(F2sum) - cabs(F1sum);
s = xbit / bitlen;
if ( s < 0 ) bit = 0; // 2200Hz
else bit = 1; // 1200Hz
bitbuf[sample_count % 3] = bit;
if (header_found && option_b)
{
if (sample_count - pos_bit > bitlen+bitlen/5 + 3)
{
int bitsum = bitbuf[0]+bitbuf[1]+bitbuf[2];
if (bitsum > 1.5) bit = 1; else bit = 0;
bitframe[bitpos] = bit;
bitpos++;
if (bitpos >= LEN_BITFRAME-200) { // LEN_GPSePTU*BITS+40
print_frame(&dsp, bitpos/BITS);
bitpos = 0;
header_found = 0;
}
pos_bit += bitlen;
}
}
else
{
if (bit != bit0) {
pos0 = pos;
pos = sample_count; //sample_count-(N-1)/2
len = (pos-pos0)/bitlen + 0.5;
for (i = 0; i < len; i++) {
inc_bufpos();
buf[bufpos] = 0x30 + bit0;
if (!header_found) {
if (compare() >= HEADLEN) {
header_found = 1;
bitpos = 10;
pos_bit = pos;
if (option_b) {
bitframe[bitpos] = bit;
bitpos++;
}
dsp.mv_pos = dsp.sample_in;
dsp.pre_pos = dsp.mv_pos - HEADLEN*dsp.sps;
if (dsp.pre_pos > dsp.mv_pos) dsp.pre_pos = 0;
}
}
else {
bitframe[bitpos] = bit0;
bitpos++;
if (bitpos >= LEN_BITFRAME-200) { // LEN_GPSePTU*BITS+40
print_frame(&dsp, bitpos/BITS);
bitpos = 0;
header_found = 0;
}
}
}
bit0 = bit;
}
}
}
fprintf(stdout, "\n");
if (buffer) { free(buffer); buffer = NULL; }
free_buffers(&dsp);
fclose(fp);
return 0;
}