RS-tracker/rs_module/rs_bch_ecc.c

537 wiersze
14 KiB
C

/*
* BCH / Reed-Solomon
* encoder()
* decoder() (Euklid. Alg.)
*
*
* author: zilog80
*
* cf. RS/ecc/bch_ecc.c
*
Vaisala RS92, RS41:
RS(255, 231), t=12
g(X) = (X-alpha^0)...(X-alpha^(2t-1))
Meisei:
bin.BCH(63, 51), t=2
g(X) = (X^6+X+1)(X^6+X^4+X^2+X+1)
g(a) = 0 fuer a = alpha^1,...,alpha^4
Es koennen 2 Fehler korrigiert werden; diese koennen auch direkt mit
L(x) = 1 + L1 x + L2 x^2, L1=L1(S1), L2=L2(S1,S3)
gefunden werden. Problem: 3 Fehler und mehr erkennen.
Auch bei 3 Fehlern ist deg(Lambda)=2 und Lambda hat auch 2 Loesungen.
Meisei-Bloecke sind auf 46 bit gekuerzt und enthalten 2 parity bits.
-> Wenn decodierte Bloecke bits in Position 46-63 schalten oder
einer der parity-checks fehlschlaegt, dann Block nicht korrigierbar.
Es werden
- 54% der 3-Fehler-Bloecke erkannt
- 39% der 3-Fehler-Bloecke werden durch Position/Parity erkannt
- 7% der 3-Fehler-Bloecke werden falsch korrigiert
*
*/
#include "rs_data.h"
#include "rs_bch_ecc.h"
#define MAX_DEG 254 // max N-1
typedef struct {
ui32_t f;
ui32_t ord;
ui8_t alpha;
} GF_t;
static GF_t GF256RS = { 0x11D, // RS-GF(2^8): X^8 + X^4 + X^3 + X^2 + 1 : 0x11D
256, // 2^8
0x02 }; // generator: alpha = X
static GF_t GF64BCH = { 0x43, // BCH-GF(2^6): X^6 + X + 1 : 0x43
64, // 2^6
0x02 }; // generator: alpha = X
/*
static GF_t GF16RS = { 0x13, // RS-GF(2^4): X^4 + X + 1 : 0x13
16, // 2^4
0x02 }; // generator: alpha = X
static GF_t GF256AES = { 0x11B, // AES-GF(2^8): X^8 + X^4 + X^3 + X + 1 : 0x11B
256, // 2^8
0x03 }; // generator: alpha = X+1
*/
typedef struct {
ui8_t N;
ui8_t t;
ui8_t R; // RS: R=2t, BCH: R<=mt
ui8_t K; // K=N-R
ui8_t b;
ui8_t g[MAX_DEG+1]; // ohne g[] eventuell als init_return
} RS_t;
static RS_t RS256 = { 255, 12, 24, 231, 0, {0}};
static RS_t BCH64 = { 63, 2, 12, 51, 1, {0}};
static GF_t GF;
static RS_t RS;
static ui8_t exp_a[256],
log_a[256];
/* --------------------------------------------------------------------------------------------- */
static
int GF_deg(ui32_t p) {
ui32_t d = 31;
if (p == 0) return -1; /* deg(0) = -infty */
else {
while (d && !(p & (1<<d))) d--; /* d<32, 1L = 1 */
}
return d;
}
static
ui8_t GF2m_mul(ui8_t a, ui8_t b) {
ui32_t aa = a;
ui8_t ab = 0;
int i, m = GF_deg(b);
if (b & 1) ab = a;
for (i = 0; i < m; i++) {
aa = (aa << 1); // a = a * X
if (GF_deg(aa) == GF_deg(GF.f))
aa ^= GF.f; // a = a - GF.f
b >>= 1;
if (b & 1) ab ^= (ui8_t)aa; /* b_{i+1} > 0 ? */
}
return ab;
}
static
int GF_genTab(GF_t gf, ui8_t expa[], ui8_t loga[]) {
int i, j;
ui8_t b;
// GF.f = f;
// GF.ord = 1 << GF_deg(GF.f);
b = 0x01;
for (i = 0; i < gf.ord; i++) {
expa[i] = b; // b_i = a^i
b = GF2m_mul(gf.alpha, b);
}
loga[0] = -00; // log(0) = -inf
for (i = 1; i < gf.ord; i++) {
b = 0x01; j = 0;
while (b != i) {
b = GF2m_mul(gf.alpha, b);
j++;
if (j > gf.ord-1) {
return -1; // a not primitive
}
} // j = log_a(i)
loga[i] = j;
}
return 0;
}
static ui8_t GF_mul(ui8_t p, ui8_t q) {
ui32_t x;
if ((p == 0) || (q == 0)) return 0;
x = (ui32_t)log_a[p] + log_a[q];
return exp_a[x % (GF.ord-1)]; // a^(ord-1) = 1
}
static ui8_t GF_inv(ui8_t p) {
if (p == 0) return 0; // DIV_BY_ZERO
return exp_a[GF.ord-1-log_a[p]]; // a^(ord-1) = 1
}
/* --------------------------------------------------------------------------------------------- */
/*
* p(x) = p[0] + p[1]x + ... + p[N-1]x^(N-1)
*/
static
ui8_t poly_eval(ui8_t poly[], ui8_t x) {
int n;
ui8_t xn, y;
y = poly[0];
if (x != 0) {
for (n = 1; n < GF.ord-1; n++) {
xn = exp_a[(n*log_a[x]) % (GF.ord-1)];
y ^= GF_mul(poly[n], xn);
}
}
return y;
}
static
int poly_deg(ui8_t p[]) {
int n = MAX_DEG;
while (p[n] == 0 && n > 0) n--;
if (p[n] == 0) n--; // deg(0) = -inf
return n;
}
static
int poly_divmod(ui8_t p[], ui8_t q[], ui8_t *d, ui8_t *r) {
int deg_p, deg_q; // p(x) = q(x)d(x) + r(x)
int i; // deg(r) < deg(q)
ui8_t c;
deg_p = poly_deg(p);
deg_q = poly_deg(q);
if (deg_q < 0) return -1; // DIV_BY_ZERO
for (i = 0; i <= MAX_DEG; i++) d[i] = 0;
for (i = 0; i <= MAX_DEG; i++) r[i] = 0;
c = GF_mul( p[deg_p], GF_inv(q[deg_q]));
if (deg_q == 0) {
for (i = 0; i <= deg_p; i++) d[i] = GF_mul(p[i], c);
for (i = 0; i <= MAX_DEG; i++) r[i] = 0;
}
else if (deg_p == 0) {
for (i = 0; i <= MAX_DEG; i++) {
d[i] = 0;
r[i] = 0;
}
}
else if (deg_p < deg_q) {
for (i = 0; i <= MAX_DEG; i++) d[i] = 0;
for (i = 0; i <= deg_p; i++) r[i] = p[i]; // r(x)=p(x), deg(r)<deg(q)
for (i = deg_p+1; i <= MAX_DEG; i++) r[i] = 0;
}
else {
for (i = 0; i <= deg_p; i++) r[i] = p[i];
while (deg_p >= deg_q) {
d[deg_p-deg_q] = c;
for (i = 0; i <= deg_q; i++) {
r[deg_p-i] ^= GF_mul( q[deg_q-i], c);
}
while (r[deg_p] == 0 && deg_p > 0) deg_p--;
if (r[deg_p] == 0) deg_p--;
if (deg_p >= 0) c = GF_mul( r[deg_p], GF_inv(q[deg_q]));
}
}
return 0;
}
static
int poly_add(ui8_t a[], ui8_t b[], ui8_t *sum) {
int i;
ui8_t c[MAX_DEG+1];
for (i = 0; i <= MAX_DEG; i++) {
c[i] = a[i] ^ b[i];
}
for (i = 0; i <= MAX_DEG; i++) { sum[i] = c[i]; }
return 0;
}
static
int poly_mul(ui8_t a[], ui8_t b[], ui8_t *ab) {
int i, j;
ui8_t c[MAX_DEG+1];
if (poly_deg(a)+poly_deg(b) > MAX_DEG) {
return -1;
}
for (i = 0; i <= MAX_DEG; i++) { c[i] = 0; }
for (i = 0; i <= poly_deg(a); i++) {
for (j = 0; j <= poly_deg(b); j++) {
c[i+j] ^= GF_mul(a[i], b[j]);
}
}
for (i = 0; i <= MAX_DEG; i++) { ab[i] = c[i]; }
return 0;
}
static
int polyGF_lfsr(int deg, ui8_t S[],
ui8_t *Lambda, ui8_t *Omega ) {
// BCH/RS/LFSR: deg=t,
// S(x)Lambda(x) = Omega(x) mod x^(2t)
int i;
ui8_t r0[MAX_DEG+1], r1[MAX_DEG+1], r2[MAX_DEG+1],
s0[MAX_DEG+1], s1[MAX_DEG+1], s2[MAX_DEG+1],
quo[MAX_DEG+1];
for (i = 0; i <= MAX_DEG; i++) { Lambda[i] = 0; }
for (i = 0; i <= MAX_DEG; i++) { Omega[i] = 0; }
for (i = 0; i <= MAX_DEG; i++) { r0[i] = S[i]; }
for (i = 0; i <= MAX_DEG; i++) { r1[i] = 0; } r1[2*deg] = 1; //x^2t
s0[0] = 1; for (i = 1; i <= MAX_DEG; i++) { s0[i] = 0; }
s1[0] = 0; for (i = 1; i <= MAX_DEG; i++) { s1[i] = 0; }
for (i = 0; i <= MAX_DEG; i++) { r2[i] = 0; }
for (i = 0; i <= MAX_DEG; i++) { s2[i] = 0; }
while ( poly_deg(r1) >= deg ) {
poly_divmod(r0, r1, quo, r2);
for (i = 0; i <= MAX_DEG; i++) { r0[i] = r1[i]; }
for (i = 0; i <= MAX_DEG; i++) { r1[i] = r2[i]; }
poly_mul(quo, s1, s2);
poly_add(s0, s2, s2);
for (i = 0; i <= MAX_DEG; i++) { s0[i] = s1[i]; }
for (i = 0; i <= MAX_DEG; i++) { s1[i] = s2[i]; }
}
// deg > 0:
for (i = 0; i <= MAX_DEG; i++) { Omega[i] = r1[i]; }
for (i = 0; i <= MAX_DEG; i++) { Lambda[i] = s1[i]; }
return 0;
}
static
int poly_D(ui8_t a[], ui8_t *Da) {
int i;
for (i = 0; i <= MAX_DEG; i++) { Da[i] = 0; } // unten werden nicht immer
// alle Koeffizienten gesetzt
for (i = 1; i <= poly_deg(a); i++) {
if (i % 2) Da[i-1] = a[i]; // GF(2^n): b+b=0
}
return 0;
}
static
ui8_t forney(ui8_t x, ui8_t Omega[], ui8_t Lambda[]) {
ui8_t DLam[MAX_DEG+1];
ui8_t w, z, Y; // x=X^(-1), Y = x^(b-1) * Omega(x)/Lambda'(x)
// Y = X^(1-b) * Omega(X^(-1))/Lambda'(X^(-1))
poly_D(Lambda, DLam);
w = poly_eval(Omega, x);
z = poly_eval(DLam, x);
Y = GF_mul(w, GF_inv(z));
if (RS.b == 0) Y = GF_mul(GF_inv(x), Y);
else if (RS.b > 1) {
ui8_t xb1 = exp_a[((RS.b-1)*log_a[x]) % (GF.ord-1)];
Y = GF_mul(xb1, Y);
}
return Y;
}
int rs_init_RS255() {
int i, check_gen;
ui8_t Xalp[MAX_DEG+1];
GF = GF256RS;
check_gen = GF_genTab( GF, exp_a, log_a);
RS = RS256; // N=255, t=12, b=0
for (i = 0; i <= MAX_DEG; i++) RS.g[i] = 0;
for (i = 0; i <= MAX_DEG; i++) Xalp[i] = 0;
// g(X)=(X-alpha^b)...(X-alpha^(b+2t-1)), b=0
RS.g[0] = 0x01;
Xalp[1] = 0x01; // X
for (i = 0; i < 2*RS.t; i++) {
Xalp[0] = exp_a[(RS.b+i) % (GF.ord-1)]; // Xalp[0..1]: X - alpha^(b+i)
poly_mul(RS.g, Xalp, RS.g);
}
return check_gen;
}
int rs_init_BCH64() {
int i, check_gen;
GF = GF64BCH;
check_gen = GF_genTab( GF, exp_a, log_a);
RS = BCH64; // N=63, t=2, b=1
for (i = 0; i <= MAX_DEG; i++) RS.g[i] = 0;
// g(X)=X^12+X^10+X^8+X^5+X^4+X^3+1
// =(X^6+X+1)(X^6+X^4+X^2+X+1)
RS.g[0] = RS.g[3] = RS.g[4] = RS.g[5] = RS.g[8] = RS.g[10] = RS.g[12] = 1;
return check_gen;
}
static
int syndromes(ui8_t cw[], ui8_t *S) {
int i, errors = 0;
ui8_t a_i;
// syndromes: e_j=S(alpha^(b+i))
for (i = 0; i < 2*RS.t; i++) {
a_i = exp_a[(RS.b+i) % (GF.ord-1)]; // alpha^(b+i)
S[i] = poly_eval(cw, a_i);
if (S[i]) errors = 1;
}
return errors;
}
int rs_encode(ui8_t cw[]) {
int j;
ui8_t parity[MAX_DEG+1],
d[MAX_DEG+1];
for (j = 0; j < RS.R; j++) cw[j] = 0;
for (j = 0; j <=MAX_DEG; j++) parity[j] = 0;
poly_divmod(cw, RS.g, d, parity);
//if (poly_deg(parity) >= RS.R) return -1;
for (j = 0; j <= poly_deg(parity); j++) cw[j] = parity[j];
return 0;
}
int rs_decode(ui8_t cw[], ui8_t *err_pos, ui8_t *err_val) {
ui8_t x, gamma,
S[MAX_DEG+1],
Lambda[MAX_DEG+1],
Omega[MAX_DEG+1];
int i, n, errors = 0;
for (i = 0; i < RS.t; i++) { err_pos[i] = 0; }
for (i = 0; i < RS.t; i++) { err_val[i] = 0; }
for (i = 0; i <= MAX_DEG; i++) { S[i] = 0; }
errors = syndromes(cw, S);
// wenn S(x)=0 , dann poly_divmod(cw, RS.g, d, rem): rem=0
if (errors) {
polyGF_lfsr(RS.t, S, Lambda, Omega);
gamma = Lambda[0];
if (gamma) {
for (i = poly_deg(Lambda); i >= 0; i--) Lambda[i] = GF_mul(Lambda[i], GF_inv(gamma));
for (i = poly_deg(Omega) ; i >= 0; i--) Omega[i] = GF_mul( Omega[i], GF_inv(gamma));
}
else {
errors = -2;
//return errors;
}
n = 0;
for (i = 1; i < GF.ord ; i++) { // Lambda(0)=1
x = (ui8_t)i; // roll-over
if (poly_eval(Lambda, x) == 0) {
// error location index
err_pos[n] = log_a[GF_inv(x)];
// error value; bin-BCH: err_val=1
err_val[n] = forney(x, Omega, Lambda);
n++;
}
if (n >= poly_deg(Lambda)) break;
}
if (n < poly_deg(Lambda)) errors = -1; // uncorrectable errors
else {
errors = n;
for (i = 0; i < errors; i++) cw[err_pos[i]] ^= err_val[i];
}
}
return errors;
}
int rs_decode_bch_gf2t2(ui8_t cw[], ui8_t *err_pos, ui8_t *err_val) {
// binary 2-error correcting BCH
ui8_t x, gamma,
S[MAX_DEG+1],
L[MAX_DEG+1], L2,
Lambda[MAX_DEG+1],
Omega[MAX_DEG+1];
int i, n, errors = 0;
for (i = 0; i < RS.t; i++) { err_pos[i] = 0; }
for (i = 0; i < RS.t; i++) { err_val[i] = 0; }
for (i = 0; i <= MAX_DEG; i++) { S[i] = 0; }
errors = syndromes(cw, S);
// wenn S(x)=0 , dann poly_divmod(cw, RS.g, d, rem): rem=0
if (errors) {
polyGF_lfsr(RS.t, S, Lambda, Omega);
gamma = Lambda[0];
if (gamma) {
for (i = poly_deg(Lambda); i >= 0; i--) Lambda[i] = GF_mul(Lambda[i], GF_inv(gamma));
for (i = poly_deg(Omega) ; i >= 0; i--) Omega[i] = GF_mul( Omega[i], GF_inv(gamma));
}
else {
errors = -2;
return errors;
}
// GF(2)-BCH, t=2:
// S1 = S[0]
// S1^2 = S2 , S2^2 = S4
// L(x) = 1 + L1 x + L2 x^2 (1-2 errors)
// L1 = S1 , L2 = (S3 + S1^3)/S1
if ( RS.t == 2 ) {
for (i = 0; i <= MAX_DEG; i++) { L[i] = 0; }
L[0] = 1;
L[1] = S[0];
L2 = GF_mul(S[0], S[0]); L2 = GF_mul(L2, S[0]); L2 ^= S[2];
L2 = GF_mul(L2, GF_inv(S[0]));
L[2] = L2;
if (S[1] != GF_mul(S[0],S[0]) || S[3] != GF_mul(S[1],S[1])) {
errors = -2;
return errors;
}
if (L[1] != Lambda[1] || L[2] != Lambda[2] ) {
errors = -2;
return errors;
}
}
n = 0;
for (i = 1; i < GF.ord ; i++) { // Lambda(0)=1
x = (ui8_t)i; // roll-over
if (poly_eval(Lambda, x) == 0) {
// error location index
err_pos[n] = log_a[GF_inv(x)];
// error value; bin-BCH: err_val=1
err_val[n] = 1; // = forney(x, Omega, Lambda);
n++;
}
if (n >= poly_deg(Lambda)) break;
}
if (n < poly_deg(Lambda)) errors = -1; // uncorrectable errors
else {
errors = n;
for (i = 0; i < errors; i++) cw[err_pos[i]] ^= err_val[i];
}
}
return errors;
}