RS-tracker/mk2a/mk2a1680mod.c

2455 wiersze
69 KiB
C

/*
Sippican MkIIa
LMS-6 (1680 MHz)
(modulation index h = 10..10.5 (deviation +/- 50kHz))
gcc -Ofast mk2a1680mod.c -lm -o mk2mod
./mk2mod -v --iq <fq> --lpIQ --lpFM --crc iq_base.wav
# default IQ lowpass 180k
# sr=375k: lpbw=145k..165k
# sr=185k: lpbw=155k..175k
./mk2mod -v --iq <fq> --lpIQ --lpbw 160 --lpFM --crc iq_base.wav
# frequency correction / tracking: --dc
./mk2mod -v --iq <fq> --lpIQ --lpbw 160 --lpFM --dc --crc iq_rfbase.wav
./mk2mod -v --iq0 --lpIQ --lpbw 160 --lpFM --crc iq_if.wav
./mk2mod -v --lpFM --crc fm_audio.wav
# FM decimation: --decFM
./mk2mod -v --iq <fq> --lpbw 160 --decFM --crc iq_base.wav
./mk2mod -vv --dc --iq <fq> --lpbw 160 --decFM --crc iq_base.wav
# --IQ
./mk2mod -vv --IQ <fq> --crc iq_base.wav
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <complex.h>
#ifdef CYGWIN
#include <fcntl.h> // cygwin: _setmode()
#include <io.h>
#endif
// optional JSON "version"
// (a) set global
// gcc -DVERSION_JSN [-I<inc_dir>] ...
#ifdef VERSION_JSN
#include "version_jsn.h"
#endif
// or
// (b) set local compiler option, e.g.
// gcc -DVER_JSN_STR=\"0.0.2\" ...
/* ------------------------------------------------------------------------------------------------- */
// -------------------------------------------------------------------------------------------------
//#include "demod_mod_Lband.h"
#ifndef M_PI
#define M_PI (3.1415926535897932384626433832795)
#endif
#define _2PI (6.2831853071795864769252867665590)
#define LP_IQ 1
#define LP_FM 2
#define LP_IQFM 4
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
typedef char i8_t;
typedef short i16_t;
typedef int i32_t;
typedef struct {
int sr; // sample_rate
int LOG2N;
int N;
int N2;
float *xn;
float complex *ew;
float complex *Fm;
float complex *X;
float complex *Z;
float complex *cx;
float complex *win; // float real
} dft_t;
typedef struct {
FILE *fp;
//
int sr; // sample_rate
int bps; // bits/sample
int nch; // channels
int ch; // select channel
//
int symlen;
int symhd;
float sps; // samples per symbol
float _spb; // samples per bit
float br; // baud rate
//
ui32_t sample_in;
ui32_t sample_out;
ui32_t sample_fm;
ui32_t delay;
ui32_t sc;
int buffered;
int L;
int M;
int K;
float *match;
float *bufs;
float mv;
ui32_t mv_pos;
//
float mv2;
ui32_t mv2_pos;
// IQ-data
int opt_iq;
int opt_iqdc;
int N_IQBUF;
float complex *rot_iqbuf;
float complex F1sum;
float complex F2sum;
//
double complex iw1;
double complex iw2;
//
char *rawbits;
char *hdr;
int hdrlen;
//
float BT; // bw/time (ISI)
float h; // modulation index
// DFT
dft_t DFT;
// dc offset
int opt_dc;
int locked;
double dc;
double Df;
double dDf;
// decimate
int opt_nolut; // default: LUT
int opt_IFmin;
int decM;
ui32_t sr_base;
ui32_t dectaps;
ui32_t sample_decX;
ui32_t lut_len;
ui32_t sample_decM;
float complex *decXbuffer;
float complex *decMbuf;
float complex *ex; // exp_lut
double xlt_fq;
// IF: lowpass
int opt_lp;
int lpIQ_bw;
float lpIQ_fbw;
int lpIQtaps; // ui32_t
float *ws_lpIQ0;
float *ws_lpIQ1;
float *ws_lpIQ;
float complex *lpIQ_buf;
// FM: lowpass
int lpFM_bw;
int lpFMtaps; // ui32_t
float *ws_lpFM;
float *lpFM_buf;
float *fm_buffer;
// IQFM: lowpass
int lpIQFM_bw;
int lpIQFMtaps; // ui32_t
float *ws_lpIQFM;
float *lpIQFM_buf;
int opt_fmdec;
int decFM;
} dsp_t;
typedef struct {
int sr; // sample_rate
int bps; // bits_sample bits/sample
int nch; // channels
int sel_ch; // select wav channel
} pcm_t;
typedef struct {
ui8_t hb;
float sb;
} hsbit_t;
typedef struct {
char *hdr;
char *buf;
float *sbuf;
int len;
int bufpos;
float thb;
float ths;
} hdb_t;
// -------------------------------------------------------------------------------------------------
// demod_mod_Lband.c
#define FM_DEC 4 // 2, 4
#define FM_GAIN (0.8)
static void raw_dft(dft_t *dft, float complex *Z) {
int s, l, l2, i, j, k;
float complex w1, w2, T;
j = 1;
for (i = 1; i < dft->N; i++) {
if (i < j) {
T = Z[j-1];
Z[j-1] = Z[i-1];
Z[i-1] = T;
}
k = dft->N/2;
while (k < j) {
j = j - k;
k = k/2;
}
j = j + k;
}
for (s = 0; s < dft->LOG2N; s++) {
l2 = 1 << s;
l = l2 << 1;
w1 = (float complex)1.0;
w2 = dft->ew[s]; // cexp(-I*M_PI/(float)l2)
for (j = 1; j <= l2; j++) {
for (i = j; i <= dft->N; i += l) {
k = i + l2;
T = Z[k-1] * w1;
Z[k-1] = Z[i-1] - T;
Z[i-1] = Z[i-1] + T;
}
w1 = w1 * w2;
}
}
}
static void cdft(dft_t *dft, float complex *z, float complex *Z) {
int i;
for (i = 0; i < dft->N; i++) Z[i] = z[i];
raw_dft(dft, Z);
}
static void rdft(dft_t *dft, float *x, float complex *Z) {
int i;
for (i = 0; i < dft->N; i++) Z[i] = (float complex)x[i];
raw_dft(dft, Z);
}
static void Nidft(dft_t *dft, float complex *Z, float complex *z) {
int i;
for (i = 0; i < dft->N; i++) z[i] = conj(Z[i]);
raw_dft(dft, z);
// idft():
// for (i = 0; i < dft->N; i++) z[i] = conj(z[i])/(float)dft->N; // hier: z reell
}
static float bin2freq0(dft_t *dft, int k) {
float fq = dft->sr * k / /*(float)*/dft->N;
if (fq >= dft->sr/2.0) fq -= dft->sr;
return fq;
}
static float bin2freq(dft_t *dft, int k) {
float fq = k / (float)dft->N;
if ( fq >= 0.5) fq -= 1.0;
return fq*dft->sr;
}
static float bin2fq(dft_t *dft, int k) {
float fq = k / (float)dft->N;
if ( fq >= 0.5) fq -= 1.0;
return fq;
}
static int max_bin(dft_t *dft, float complex *Z) {
int k, kmax;
double max;
max = 0; kmax = 0;
for (k = 0; k < dft->N; k++) {
if (cabs(Z[k]) > max) {
max = cabs(Z[k]);
kmax = k;
}
}
return kmax;
}
static int dft_window(dft_t *dft, int w) {
int n;
if (w < 0 || w > 3) return -1;
for (n = 0; n < dft->N2; n++) {
switch (w)
{
case 0: // (boxcar)
dft->win[n] = 1.0;
break;
case 1: // Hann
dft->win[n] = 0.5 * ( 1.0 - cos(_2PI*n/(float)(dft->N2-1)) );
break ;
case 2: // Hamming
dft->win[n] = 25/46.0 - (1.0 - 25/46.0)*cos(_2PI*n / (float)(dft->N2-1));
break ;
case 3: // Blackmann
dft->win[n] = 7938/18608.0
- 9240/18608.0*cos(_2PI*n / (float)(dft->N2-1))
+ 1430/18608.0*cos(4*M_PI*n / (float)(dft->N2-1));
break ;
}
}
while (n < dft->N) dft->win[n++] = 0.0;
return 0;
}
/* ------------------------------------------------------------------------------------ */
static int getCorrDFT(dsp_t *dsp) {
int i;
int mp = -1;
float mx = 0.0;
float mx2 = 0.0;
float re_cx = 0.0;
float xnorm = 1;
ui32_t mpos = 0;
ui32_t pos = dsp->sample_out;
float *sbuf = dsp->bufs;
float *dcbuf = dsp->fm_buffer;
dsp->mv = 0.0;
dsp->dc = 0.0;
if (dsp->K + dsp->L > dsp->DFT.N) return -1;
if (dsp->sample_out < dsp->L) return -2;
for (i = 0; i < dsp->K + dsp->L; i++) dsp->DFT.xn[i] = sbuf[(pos+dsp->M -(dsp->K + dsp->L-1) + i) % dsp->M];
while (i < dsp->DFT.N) dsp->DFT.xn[i++] = 0.0;
rdft(&dsp->DFT, dsp->DFT.xn, dsp->DFT.X);
if (dsp->opt_dc) {
/*
//X[0] = 0; // nicht ueber gesamte Laenge ... M10
//
// L < K ? // only last 2L samples (avoid M10 carrier offset)
//dc = 0.0;
//for (i = dsp->K - dsp->L; i < dsp->K + dsp->L; i++) dc += dsp->DFT.xn[i];
//dc /= 2.0*(float)dsp->L;
dc = 0.0;
for (i = dsp->K; i < dsp->K + dsp->L; i++) dc += dsp->DFT.xn[i];
dc /= 1.0*(float)dsp->L;
dsp->DFT.X[0] -= dsp->DFT.N * dc * 0.95; // dc * dsp->L
*/
dsp->DFT.X[0] = 0;
Nidft(&dsp->DFT, dsp->DFT.X, dsp->DFT.cx);
for (i = 0; i < dsp->DFT.N; i++) (dsp->DFT).xn[i] = creal(dsp->DFT.cx[i])/(float)dsp->DFT.N;
}
for (i = 0; i < dsp->DFT.N; i++) dsp->DFT.Z[i] = dsp->DFT.X[i]*dsp->DFT.Fm[i];
Nidft(&dsp->DFT, dsp->DFT.Z, dsp->DFT.cx);
// relativ Peak - Normierung erst zum Schluss;
// dann jedoch nicht zwingend corr-Max wenn FM-Amplitude bzw. norm(x) nicht konstant
// (z.B. rs41 Signal-Pausen). Moeglicherweise wird dann wahres corr-Max in dem
// K-Fenster nicht erkannt, deshalb K nicht zu gross waehlen.
//
mx2 = 0.0; // t = L-1
for (i = dsp->L-1; i < dsp->K + dsp->L; i++) { // i=t .. i=t+K < t+1+K
re_cx = creal(dsp->DFT.cx[i]); // imag(cx)=0
if (re_cx*re_cx > mx2) {
mx = re_cx;
mx2 = mx*mx;
mp = i;
}
}
if (mp == dsp->L-1 || mp == dsp->K + dsp->L-1) return -4; // Randwert
// mp == t mp == K+t
mpos = pos - (dsp->K + dsp->L-1) + mp; // t = L-1
xnorm = 0.0;
for (i = 0; i < dsp->L; i++) xnorm += dsp->DFT.xn[mp-i]*dsp->DFT.xn[mp-i];
xnorm = sqrt(xnorm);
mx /= xnorm*dsp->DFT.N;
dsp->mv = mx;
dsp->mv_pos = mpos;
if (pos == dsp->sample_out) dsp->buffered = dsp->sample_out - mpos;
dsp->mv2 = 0.0f;
dsp->mv2_pos = 0;
if (dsp->opt_dc) {
if (dsp->opt_iq >= 2 && dsp->opt_iq < 6 && !dsp->locked) {
mx = 0.0f;
mpos = 0;
for (i = 0; i < dsp->K + dsp->L; i++) dsp->DFT.xn[i] = dcbuf[(pos+dsp->M -(dsp->K + dsp->L-1) + i) % dsp->M];
while (i < dsp->DFT.N) dsp->DFT.xn[i++] = 0.0;
rdft(&dsp->DFT, dsp->DFT.xn, dsp->DFT.X);
dsp->DFT.X[0] = 0;
Nidft(&dsp->DFT, dsp->DFT.X, dsp->DFT.cx);
for (i = 0; i < dsp->DFT.N; i++) dsp->DFT.xn[i] = creal(dsp->DFT.cx[i])/(float)dsp->DFT.N;
for (i = 0; i < dsp->DFT.N; i++) dsp->DFT.Z[i] = dsp->DFT.X[i]*dsp->DFT.Fm[i];
Nidft(&dsp->DFT, dsp->DFT.Z, dsp->DFT.cx);
mx2 = 0.0; // t = L-1
for (i = dsp->L-1; i < dsp->K + dsp->L; i++) { // i=t .. i=t+K < t+1+K
re_cx = creal(dsp->DFT.cx[i]); // imag(cx)=0
if (re_cx*re_cx > mx2) {
mx = re_cx;
mx2 = mx*mx;
mp = i;
}
}
if (mp == dsp->L-1 || mp == dsp->K + dsp->L-1) return -4; // Randwert
// mp == t mp == K+t
mpos = pos - (dsp->K + dsp->L-1) + mp; // t = L-1
xnorm = 0.0;
for (i = 0; i < dsp->L; i++) xnorm += dsp->DFT.xn[mp-i]*dsp->DFT.xn[mp-i];
xnorm = sqrt(xnorm);
mx /= xnorm*(dsp->DFT).N;
dsp->mv2 = mx;
dsp->mv2_pos = mpos;
}
}
// header: mpos-L .. mpos (CA CA CA 24 52)
// dc(header) ? -> Mk2a: 0xCA preamble, mpos-L .. mpos-2/5*L
if (dsp->opt_dc)
{
double dc = 0.0;
int mp_ofs = 0;
if (dsp->opt_iq >= 2 && dsp->opt_iq < 6 && dsp->mv2_pos == 0) {
mp_ofs = (dsp->lpFMtaps - dsp->lpIQFMtaps - (dsp->sps-1))/(2*dsp->decFM);
}
dc = 0.0;
for (i = 2*dsp->L/5; i < dsp->L; i++) dc += dcbuf[(mp_ofs + mpos - i + dsp->M) % dsp->M];
dc /= (float)dsp->L*3/5.0;
dsp->dc = dc;
}
// FM: s = gain * carg(w)/M_PI = gain * dphi / PI // gain=0.8
// FM audio gain? dc relative to FM-envelope?!
//
dsp->dDf = dsp->sr * dsp->dc / (2.0*FM_GAIN); // remaining freq offset
return mp;
}
/* ------------------------------------------------------------------------------------ */
static int findstr(char *buff, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buff[(pos+i)%4] != str[i]) break;
}
return i;
}
static
int read_wav_header(pcm_t *pcm, FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
int sample_rate = 0, bits_sample = 0, channels = 0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4) && strncmp(txt, "RF64", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if (pcm->sel_ch < 0 || pcm->sel_ch >= channels) pcm->sel_ch = 0; // default channel: 0
//fprintf(stderr, "channel-In : %d\n", pcm->sel_ch+1); // nur wenn nicht IQ
if (bits_sample != 8 && bits_sample != 16 && bits_sample != 32) return -1;
if (sample_rate == 900001) sample_rate -= 1;
pcm->sr = sample_rate;
pcm->bps = bits_sample;
pcm->nch = channels;
return 0;
}
static int f32read_sample(dsp_t *dsp, float *s) {
int i;
unsigned int word = 0;
short *b = (short*)&word;
float *f = (float*)&word;
for (i = 0; i < dsp->nch; i++) {
if (fread( &word, dsp->bps/8, 1, dsp->fp) != 1) return EOF;
if (i == dsp->ch) { // i = 0: links bzw. mono
//if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128
//if (bits_sample == 16) sint = (short)b;
if (dsp->bps == 32) {
*s = *f;
}
else {
if (dsp->bps == 8) { *b -= 128; }
*s = *b/128.0;
if (dsp->bps == 16) { *s /= 256.0; }
}
}
}
return 0;
}
typedef struct {
double sumIQx;
double sumIQy;
float avgIQx;
float avgIQy;
float complex avgIQ;
ui32_t cnt;
ui32_t maxcnt;
ui32_t maxlim;
} iq_dc_t;
static iq_dc_t IQdc;
static int f32read_csample(dsp_t *dsp, float complex *z) {
float x, y;
if (dsp->bps == 32) { //float32
float f[2];
if (fread( f, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = f[0];
y = f[1];
}
else if (dsp->bps == 16) { //int16
short b[2];
if (fread( b, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = b[0]/32768.0;
y = b[1]/32768.0;
}
else { // dsp->bps == 8 //uint8
ui8_t u[2];
if (fread( u, dsp->bps/8, 2, dsp->fp) != 2) return EOF;
x = (u[0]-128)/128.0;
y = (u[1]-128)/128.0;
}
*z = x + I*y;
// IQ-dc removal optional
if (dsp->opt_iqdc) {
*z -= IQdc.avgIQ;
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
}
return 0;
}
static int f32read_cblock(dsp_t *dsp) {
int n;
int len;
float x, y;
ui8_t s[4*2*dsp->decM]; //uin8,int16,float32
ui8_t *u = (ui8_t*)s;
short *b = (short*)s;
float *f = (float*)s;
len = fread( s, dsp->bps/8, 2*dsp->decM, dsp->fp) / 2;
//for (n = 0; n < len; n++) dsp->decMbuf[n] = (u[2*n]-128)/128.0 + I*(u[2*n+1]-128)/128.0;
// u8: 0..255, 128 -> 0V
for (n = 0; n < len; n++) {
if (dsp->bps == 8) { //uint8
x = (u[2*n ]-128)/128.0;
y = (u[2*n+1]-128)/128.0;
}
else if (dsp->bps == 16) { //int16
x = b[2*n ]/32768.0;
y = b[2*n+1]/32768.0;
}
else { // dsp->bps == 32 //float32
x = f[2*n];
y = f[2*n+1];
}
// baseband: IQ-dc removal mandatory
dsp->decMbuf[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy);
IQdc.sumIQx += x;
IQdc.sumIQy += y;
IQdc.cnt += 1;
if (IQdc.cnt == IQdc.maxcnt) {
IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt;
IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt;
IQdc.avgIQ = IQdc.avgIQx + I*IQdc.avgIQy;
IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0;
if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2;
}
}
return len;
}
// decimate lowpass
static float *ws_dec;
static double sinc(double x) {
double y;
if (x == 0) y = 1;
else y = sin(M_PI*x)/(M_PI*x);
return y;
}
static int lowpass_init(float f, int taps, float **pws) {
double *h, *w;
double norm = 0;
int n;
float *ws = NULL;
if (taps % 2 == 0) taps++; // odd/symmetric
if ( taps < 1 ) taps = 1;
h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1;
w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1;
ws = (float*)calloc( 2*taps+1, sizeof(float)); if (ws == NULL) return -1;
for (n = 0; n < taps; n++) {
w[n] = 7938/18608.0 - 9240/18608.0*cos(_2PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann
h[n] = 2*f*sinc(2*f*(n-(taps-1)/2));
ws[n] = w[n]*h[n];
norm += ws[n]; // 1-norm
}
for (n = 0; n < taps; n++) {
ws[n] /= norm; // 1-norm
}
for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; // duplicate/unwrap
*pws = ws;
free(h); h = NULL;
free(w); w = NULL;
return taps;
}
static float complex lowpass1a(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
double complex w = 0;
ui32_t n;
ui32_t S = taps-1 + (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S-n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return (float complex)w;
// symmetry: ws[n] == ws[taps-1-n]
}
//static __attribute__((optimize("-ffast-math"))) float complex lowpass()
static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0;
int n; // -Ofast
int S = taps - (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
static float complex lowpass2(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) {
float complex w = 0;
int n;
int s = sample % taps;
int S1 = s;
int S1N = S1-taps;
int n0 = taps-s;
for (n = 0; n < n0; n++) {
w += buffer[S1+n]*ws[n];
}
for (n = n0; n < taps; n++) {
w += buffer[S1N+n]*ws[n];
}
return w;
// symmetry: ws[n] == ws[taps-1-n]
}
static float re_lowpass(float buffer[], ui32_t sample, ui32_t taps, float *ws) {
float w = 0;
int n;
int S = taps - (sample % taps);
for (n = 0; n < taps; n++) {
w += buffer[n]*ws[S+n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps]
}
return w;
}
static
int f32buf_sample(dsp_t *dsp, int inv) {
float s = 0.0;
float s_fm = s;
float complex z, w, z0;
double gain = FM_GAIN;
ui32_t decFM = 1;
ui32_t _sample = dsp->sample_in;
int m = 0;
if (dsp->opt_fmdec) {
decFM = dsp->decFM;
_sample = dsp->sample_in * decFM;
}
for (m = 0; m < decFM; m++)
{
double t = _sample / (double)dsp->sr;
if (dsp->opt_iq)
{
if (dsp->opt_iq >= 5) {
int j;
if ( f32read_cblock(dsp) < dsp->decM ) return EOF;
for (j = 0; j < dsp->decM; j++) {
if (dsp->opt_nolut) {
double _s_base = (double)(_sample*dsp->decM+j); // dsp->sample_dec
double f0 = dsp->xlt_fq*_s_base - dsp->Df*_s_base/(double)dsp->sr_base;
z = dsp->decMbuf[j] * cexp(f0*_2PI*I);
}
else {
z = dsp->decMbuf[j] * dsp->ex[dsp->sample_decM];
}
dsp->sample_decM += 1; if (dsp->sample_decM >= dsp->lut_len) dsp->sample_decM = 0;
dsp->decXbuffer[dsp->sample_decX] = z;
dsp->sample_decX += 1; if (dsp->sample_decX >= dsp->dectaps) dsp->sample_decX = 0;
}
if (dsp->decM > 1)
{
z = lowpass(dsp->decXbuffer, dsp->sample_decX, dsp->dectaps, ws_dec);
}
}
else if ( f32read_csample(dsp, &z) == EOF ) return EOF;
if (dsp->opt_dc && !dsp->opt_nolut) {
z *= cexp(-t*_2PI*dsp->Df*I);
}
// IF-lowpass
if (dsp->opt_lp & LP_IQ) {
dsp->lpIQ_buf[_sample % dsp->lpIQtaps] = z;
z = lowpass(dsp->lpIQ_buf, _sample+1, dsp->lpIQtaps, dsp->ws_lpIQ);
}
z0 = dsp->rot_iqbuf[(_sample-1 + dsp->N_IQBUF) % dsp->N_IQBUF];
w = z * conj(z0);
s_fm = gain * carg(w)/M_PI;
dsp->rot_iqbuf[_sample % dsp->N_IQBUF] = z;
if (dsp->opt_iq >= 2 && dsp->opt_iq < 6)
{
if (0) { // not L band
double xbit = 0.0;
//float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps);
//double f1 = -dsp->h*dsp->sr/(2*dsp->sps);
//double f2 = -f1;
float complex X0 = 0;
float complex X = 0;
int n = dsp->sps;
double tn = (_sample-n) / (double)dsp->sr;
//t = _sample / (double)dsp->sr;
//z = dsp->rot_iqbuf[_sample % dsp->N_IQBUF];
z0 = dsp->rot_iqbuf[(_sample-n + dsp->N_IQBUF) % dsp->N_IQBUF];
// f1
X0 = z0 * cexp(-tn*dsp->iw1); // alt
X = z * cexp(-t *dsp->iw1); // neu
dsp->F1sum += X - X0;
// f2
X0 = z0 * cexp(-tn*dsp->iw2); // alt
X = z * cexp(-t *dsp->iw2); // neu
dsp->F2sum += X - X0;
xbit = cabs(dsp->F2sum) - cabs(dsp->F1sum);
s = xbit / dsp->sps;
}
else {
double xbit = 0.0;
float _sps = dsp->sps * decFM;
//float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps);
//double f1 = -dsp->h*dsp->sr/(2*_sps);
//double f2 = -f1;
float complex X1 = 0;
float complex X2 = 0;
int n = _sps;
float sk = _sps/2.4f;
while (n > 0) {
n--;
if (n > sk && n < _sps-sk)
{
t = -n / (double)dsp->sr;
z = dsp->rot_iqbuf[(_sample - n + dsp->N_IQBUF) % dsp->N_IQBUF];
X1 += z*cexp(-t*dsp->iw1);
X2 += z*cexp(-t*dsp->iw2);
}
}
xbit = cabs(X2) - cabs(X1);
s = xbit / _sps; //opt_iq==5
}
}
else {
s = s_fm; //opt_iq=1,6
}
}
else {
if (f32read_sample(dsp, &s) == EOF) return EOF;
s_fm = s; //opt_iq==0
}
// FM-lowpass
if (dsp->opt_lp & LP_FM) {
dsp->lpFM_buf[_sample % dsp->lpFMtaps] = s_fm;
if (m+1 == decFM) {
s_fm = re_lowpass(dsp->lpFM_buf, _sample+1, dsp->lpFMtaps, dsp->ws_lpFM);
if (dsp->opt_iq < 2 || dsp->opt_iq > 5) s = s_fm; //opt_iq==0,1,6
}
}
// IQFM-lowpass II / separate IQ-FM lowpass
if (dsp->opt_lp & LP_IQFM) { // opt_iq==5
dsp->lpIQFM_buf[_sample % dsp->lpIQFMtaps] = s;
if (m+1 == decFM) {
s = re_lowpass(dsp->lpIQFM_buf, _sample+1, dsp->lpIQFMtaps, dsp->ws_lpIQFM);
}
}
_sample += 1;
}
if (inv) s = -s;
dsp->bufs[dsp->sample_in % dsp->M] = s;
dsp->fm_buffer[dsp->sample_in % dsp->M] = s_fm;
dsp->sample_out = dsp->sample_in - dsp->delay;
dsp->sample_in += 1;
return 0;
}
static int read_bufbit(dsp_t *dsp, int symlen, char *bits, ui32_t mvp, int pos) {
// symlen==2: manchester2 0->10,1->01->1: 2.bit
double rbitgrenze = pos*symlen*dsp->sps;
ui32_t rcount = ceil(rbitgrenze);//+0.99; // dfm?
double sum = 0.0;
double dc = 0.0;
if (dsp->opt_dc && (dsp->opt_iq < 2 || dsp->opt_iq > 5)) dc = dsp->dc;
// bei symlen=2 (Manchester) kein dc noetig: -dc+dc=0 ;
// allerdings M10-header mit symlen=1
rbitgrenze += dsp->sps;
do {
sum += dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dc;
rcount++;
} while (rcount < rbitgrenze); // n < dsp->sps
if (symlen == 2) {
rbitgrenze += dsp->sps;
do {
sum -= dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dc;
rcount++;
} while (rcount < rbitgrenze); // n < dsp->sps
}
if (symlen != 2) {
if (sum >= 0) *bits = '1';
else *bits = '0';
}
else {
if (sum >= 0) strncpy(bits, "10", 2);
else strncpy(bits, "01", 2);
}
return 0;
}
static int headcmp(dsp_t *dsp, int opt_dc) {
int errs = 0;
int pos;
int step = 1;
char sign = 0;
int len = dsp->hdrlen/dsp->symhd;
int inv = dsp->mv < 0;
if (dsp->symhd != 1) step = 2;
if (inv) sign=1;
for (pos = 0; pos < len; pos++) { // L = dsp->hdrlen * dsp->sps + 0.5;
//read_bufbit(dsp, dsp->symhd, dsp->rawbits+pos*step, mvp+1-(int)(len*dsp->sps), pos);
read_bufbit(dsp, dsp->symhd, dsp->rawbits+pos*step, dsp->mv_pos+1-dsp->L, pos);
}
dsp->rawbits[pos] = '\0';
while (len > 0) {
if ((dsp->rawbits[len-1]^sign) != dsp->hdr[len-1]) errs += 1;
len--;
}
return errs;
}
/* -------------------------------------------------------------------------- */
static
int read_softbit2p(dsp_t *dsp, hsbit_t *shb, int inv, int ofs, int pos, float l, int spike, hsbit_t *shb1) {
// symlen==2: manchester2 10->0,01->1: 2.bit
float sample, sample1;
float avg;
float ths = 0.5, scale = 0.27;
double sum = 0.0, sum1 = 0.0;
double mid;
//double l = 1.0;
double bg = pos*dsp->symlen*dsp->sps;
double dc = 0.0;
ui8_t bit = 0, bit1 = 0;
// whole frame, dsp->dDf correction before (!dsp->opt_iq can miss frame)
if (dsp->opt_dc && (dsp->opt_iq < 2 || dsp->opt_iq > 5)) dc = dsp->dc;
if (pos == 0) {
bg = 0;
dsp->sc = 0;
}
if (dsp->symlen == 2) {
mid = bg + (dsp->sps-1)/2.0;
bg += dsp->sps;
do {
if (dsp->buffered > 0) dsp->buffered -= 1;
else if (f32buf_sample(dsp, inv) == EOF) return EOF;
sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M];
sample1 = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs-1 + dsp->M) % dsp->M];
if (spike && fabs(sample - avg) > ths) {
avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M]
+dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]);
sample = avg + scale*(sample - avg); // spikes
}
sample -= dc;
sample1 -= dc;
if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) {
sum -= sample;
sum1 -= sample1;
}
dsp->sc++;
} while (dsp->sc < bg); // n < dsp->sps
}
mid = bg + (dsp->sps-1)/2.0;
bg += dsp->sps;
do {
if (dsp->buffered > 0) dsp->buffered -= 1;
else if (f32buf_sample(dsp, inv) == EOF) return EOF;
sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M];
sample1 = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs-1 + dsp->M) % dsp->M];
if (spike && fabs(sample - avg) > ths) {
avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M]
+dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]);
sample = avg + scale*(sample - avg); // spikes
}
sample -= dc;
sample1 -= dc;
if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) {
sum += sample;
sum1 += sample1;
}
dsp->sc++;
} while (dsp->sc < bg); // n < dsp->sps
if (sum >= 0) bit = 1;
else bit = 0;
shb->hb = bit;
shb->sb = (float)sum;
if (sum1 >= 0) bit1 = 1;
else bit1 = 0;
shb1->hb = bit1;
shb1->sb = (float)sum1;
return 0;
}
/* -------------------------------------------------------------------------- */
#define IF_SAMPLE_RATE 48000
#define IF_SAMPLE_RATE_MIN 32000
#define IF_TRANSITION_BW (8e3) // (min) transition width
#define FM_TRANSITION_BW (4e3) // (min) transition width
#define SQRT2 1.4142135624 // sqrt(2)
// sigma = sqrt(log(2)) / (2*PI*BT):
//#define SIGMA 0.2650103635 // BT=0.5: 0.2650103635 , BT=0.3: 0.4416839392
// Gaussian FM-pulse
static double Q(double x) {
return 0.5 - 0.5*erf(x/SQRT2);
}
static double pulse(double t, double sigma) {
return Q((t-0.5)/sigma) - Q((t+0.5)/sigma);
}
static double norm2_vect(float *vect, int n) {
int i;
double x, y = 0.0;
for (i = 0; i < n; i++) {
x = vect[i];
y += x*x;
}
return y;
}
static
int init_buffers_Lband(dsp_t *dsp) {
int Lscale = 4;
int i, pos;
float b0, b1, b2, b;
float normMatch;
double t;
double sigma = sqrt(log(2)) / (_2PI*dsp->BT);
int p2 = 1;
int K, L, M;
int n, k;
float *m = NULL;
// decimate
if (dsp->opt_iq >= 5)
{
int IF_sr = IF_SAMPLE_RATE*Lscale; // designated IF sample rate
int decM = 1; // decimate M:1
int sr_base = dsp->sr;
float f_lp; // dec_lowpass: lowpass_bandwidth/2
float t_bw; // dec_lowpass: transition_bandwidth
int taps; // dec_lowpass: taps
if (dsp->opt_IFmin) IF_sr = IF_SAMPLE_RATE_MIN*Lscale;
if (IF_sr > sr_base) IF_sr = sr_base;
if (IF_sr < sr_base) {
while (sr_base % IF_sr) IF_sr += 1;
decM = sr_base / IF_sr;
}
f_lp = (IF_sr+60e3)/(4.0*sr_base);
t_bw = (IF_sr-180e3)/*/2.0*/;
if (dsp->opt_IFmin) {
t_bw = (IF_sr-80e3);
}
if (t_bw < 0) t_bw = 160e3;
t_bw /= sr_base;
taps = 4.0/t_bw; if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &ws_dec); // decimate lowpass
if (taps < 0) return -1;
dsp->dectaps = (ui32_t)taps;
dsp->sr_base = sr_base;
dsp->sr = IF_sr; // sr_base/decM
dsp->sps /= (float)decM;
dsp->_spb /= (float)decM;
dsp->decM = decM;
fprintf(stderr, "IF: %d\n", IF_sr);
fprintf(stderr, "dec: %d\n", decM);
}
if (dsp->opt_iq >= 5)
{
if (!dsp->opt_nolut)
{
// look up table, exp-rotation
int W = 2*8; // 16 Hz window
int d = 1; // 1..W , groesster Teiler d <= W von sr_base
int freq = (int)( dsp->xlt_fq * (double)dsp->sr_base + 0.5);
int freq0 = freq; // init
double f0 = freq0 / (double)dsp->sr_base; // init
for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr
if (dsp->sr_base % d == 0) break;
}
if (d == 0) d = 1; // d >= 1 ?
for (k = 0; k < W/2; k++) {
if ((freq+k) % d == 0) {
freq0 = freq + k;
break;
}
if ((freq-k) % d == 0) {
freq0 = freq - k;
break;
}
}
dsp->lut_len = dsp->sr_base / d;
f0 = freq0 / (double)dsp->sr_base;
dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex));
if (dsp->ex == NULL) return -1;
for (n = 0; n < dsp->lut_len; n++) {
t = f0*(double)n;
dsp->ex[n] = cexp(t*_2PI*I);
}
}
dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex));
if (dsp->decXbuffer == NULL) return -1;
dsp->decMbuf = calloc( dsp->decM+1, sizeof(float complex));
if (dsp->decMbuf == NULL) return -1;
}
// IF lowpass
if (dsp->opt_iq && (dsp->opt_lp & LP_IQ))
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 160e3/(float)dsp->sr/2.0; // default
if (dsp->lpIQ_bw) f_lp = dsp->lpIQ_bw/(float)dsp->sr/2.0;
taps = 4*dsp->sr/IF_TRANSITION_BW;
if (dsp->sr > 100e3) taps = taps/2;
if (dsp->sr > 200e3) taps = taps/2;
if (taps%2==0) taps++;
taps = lowpass_init(1.5*f_lp, taps, &dsp->ws_lpIQ0); if (taps < 0) return -1;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpIQ1); if (taps < 0) return -1;
dsp->lpIQ_fbw = f_lp;
dsp->lpIQtaps = taps;
dsp->lpIQ_buf = calloc( dsp->lpIQtaps+3, sizeof(float complex));
if (dsp->lpIQ_buf == NULL) return -1;
dsp->ws_lpIQ = dsp->ws_lpIQ1;
// dc-offset: if not centered, (acquisition) filter bw = lpIQ_bw + 4kHz
// coarse acquisition:
if (dsp->opt_dc) {
dsp->locked = 0;
dsp->ws_lpIQ = dsp->ws_lpIQ0;
}
}
// FM lowpass
if (dsp->opt_lp & LP_FM)
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 10e3/(float)dsp->sr; // default
if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr;
taps = 4*dsp->sr/FM_TRANSITION_BW;
if (dsp->decFM > 1)
{
f_lp *= 2; //if (dsp->opt_iq >= 2 && dsp->opt_iq < 6) f_lp *= 2;
taps = taps/2;
}
if (dsp->sr > 100e3) taps = taps/2;
if (dsp->sr > 200e3) taps = taps/2;
if (dsp->opt_iq == 5) taps = taps/2;
if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpFM); if (taps < 0) return -1;
dsp->lpFMtaps = taps;
dsp->lpFM_buf = calloc( dsp->lpFMtaps+3, sizeof(float complex));
if (dsp->lpFM_buf == NULL) return -1;
}
// IQFM lowpass
if (dsp->opt_lp & LP_IQFM) // opt_iq==5
{
float f_lp; // lowpass_bw
int taps; // lowpass taps: 4*sr/transition_bw
f_lp = 10e3/(float)dsp->sr; // default
//if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr;
taps = 4*dsp->sr/FM_TRANSITION_BW;
//if (dsp->decFM > 1)
{
f_lp *= 2.0*2;
taps = taps/2;
}
if (dsp->sr > 100e3) taps = taps/2;
if (dsp->sr > 200e3) taps = taps/2;
taps = taps/2;
taps = taps/2;
if (taps%2==0) taps++;
taps = lowpass_init(f_lp, taps, &dsp->ws_lpIQFM); if (taps < 0) return -1;
dsp->lpIQFMtaps = taps;
dsp->lpIQFM_buf = calloc( dsp->lpIQFMtaps+3, sizeof(float complex));
if (dsp->lpIQFM_buf == NULL) return -1;
}
memset(&IQdc, 0, sizeof(IQdc));
IQdc.maxlim = dsp->sr;
IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1
if (dsp->decM > 1) {
IQdc.maxlim *= dsp->decM;
IQdc.maxcnt *= dsp->decM;
}
// FM dec: sps = sps_if / FM_DEC
L = dsp->hdrlen * dsp->sps + 0.5;
M = 3*L;
//if (dsp->sps < 6) M = 6*L;
dsp->delay = L/16;
dsp->sample_in = 0;
p2 = 1;
while (p2 < M) p2 <<= 1;
while (p2 < 0x2000) p2 <<= 1; // 0x1000 if header distance too short, or reduce K // 0x4000, if sample not too short
M = p2;
dsp->DFT.N = p2; // 2*p2
dsp->DFT.LOG2N = log(dsp->DFT.N)/log(2)+0.1; // 32bit cpu ... intermediate floating-point precision
//while ((1 << dsp->DFT.LOG2N) < dsp->DFT.N) dsp->DFT.LOG2N++; // better N = (1 << LOG2N) ...
K = M-L - dsp->delay; // L+K < M
// header distance 24 52 4d .. 24 52 54 : 790 bits
while (K > 790*dsp->sps) K--;
dsp->DFT.sr = dsp->sr;
dsp->K = K;
dsp->L = L;
dsp->M = M;
dsp->bufs = (float *)calloc( M+1, sizeof(float)); if (dsp->bufs == NULL) return -100;
dsp->match = (float *)calloc( L+1, sizeof(float)); if (dsp->match == NULL) return -100;
dsp->rawbits = (char *)calloc( 2*dsp->hdrlen+1, sizeof(char)); if (dsp->rawbits == NULL) return -100;
for (i = 0; i < M; i++) dsp->bufs[i] = 0.0;
for (i = 0; i < L; i++) {
pos = i/dsp->sps;
t = (i - pos*dsp->sps)/dsp->sps - 0.5;
b1 = ((dsp->hdr[pos] & 0x1) - 0.5)*2.0;
b = b1*pulse(t, sigma);
if (pos > 0) {
b0 = ((dsp->hdr[pos-1] & 0x1) - 0.5)*2.0;
b += b0*pulse(t+1, sigma);
}
if (pos < dsp->hdrlen-1) {
b2 = ((dsp->hdr[pos+1] & 0x1) - 0.5)*2.0;
b += b2*pulse(t-1, sigma);
}
dsp->match[i] = b;
}
normMatch = sqrt( norm2_vect(dsp->match, L) );
for (i = 0; i < L; i++) {
dsp->match[i] /= normMatch;
}
dsp->DFT.xn = calloc(dsp->DFT.N+1, sizeof(float)); if (dsp->DFT.xn == NULL) return -1;
dsp->DFT.Fm = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.Fm == NULL) return -1;
dsp->DFT.X = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.X == NULL) return -1;
dsp->DFT.Z = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.Z == NULL) return -1;
dsp->DFT.cx = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.cx == NULL) return -1;
dsp->DFT.ew = calloc(dsp->DFT.LOG2N+1, sizeof(float complex)); if (dsp->DFT.ew == NULL) return -1;
// FFT window
// a) N2 = N
// b) N2 < N (interpolation)
dsp->DFT.win = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.win == NULL) return -1; // float real
dsp->DFT.N2 = dsp->DFT.N;
//dsp->DFT.N2 = dsp->DFT.N/2 - 1; // N=2^log2N
dft_window(&dsp->DFT, 1);
for (n = 0; n < dsp->DFT.LOG2N; n++) {
k = 1 << n;
dsp->DFT.ew[n] = cexp(-I*M_PI/(float)k);
}
m = calloc(dsp->DFT.N+1, sizeof(float)); if (m == NULL) return -1;
for (i = 0; i < L; i++) m[L-1 - i] = dsp->match[i]; // t = L-1
while (i < dsp->DFT.N) m[i++] = 0.0;
rdft(&dsp->DFT, m, dsp->DFT.Fm);
free(m); m = NULL;
if (dsp->opt_iq)
{
if (dsp->nch < 2) return -1;
dsp->N_IQBUF = dsp->DFT.N;
dsp->rot_iqbuf = calloc(dsp->N_IQBUF+1, sizeof(float complex)); if (dsp->rot_iqbuf == NULL) return -1;
}
dsp->fm_buffer = (float *)calloc( M+1, sizeof(float)); if (dsp->fm_buffer == NULL) return -1; // dsp->bufs[]
if (dsp->opt_iq)
{
double f1 = -dsp->h*dsp->sr/(2.0*dsp->sps);
double f2 = -f1;
dsp->iw1 = _2PI*I*f1;
dsp->iw2 = _2PI*I*f2;
}
return K;
}
static
int free_buffers(dsp_t *dsp) {
if (dsp->match) { free(dsp->match); dsp->match = NULL; }
if (dsp->bufs) { free(dsp->bufs); dsp->bufs = NULL; }
if (dsp->rawbits) { free(dsp->rawbits); dsp->rawbits = NULL; }
if (dsp->DFT.xn) { free(dsp->DFT.xn); dsp->DFT.xn = NULL; }
if (dsp->DFT.ew) { free(dsp->DFT.ew); dsp->DFT.ew = NULL; }
if (dsp->DFT.Fm) { free(dsp->DFT.Fm); dsp->DFT.Fm = NULL; }
if (dsp->DFT.X) { free(dsp->DFT.X); dsp->DFT.X = NULL; }
if (dsp->DFT.Z) { free(dsp->DFT.Z); dsp->DFT.Z = NULL; }
if (dsp->DFT.cx) { free(dsp->DFT.cx); dsp->DFT.cx = NULL; }
if (dsp->DFT.win) { free(dsp->DFT.win); dsp->DFT.win = NULL; }
if (dsp->opt_iq)
{
if (dsp->rot_iqbuf) { free(dsp->rot_iqbuf); dsp->rot_iqbuf = NULL; }
}
// decimate
if (dsp->opt_iq >= 5)
{
if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; }
if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; }
if (!dsp->opt_nolut) {
if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; }
}
if (ws_dec) { free(ws_dec); ws_dec = NULL; }
}
// IF lowpass
if (dsp->opt_iq && (dsp->opt_lp & LP_IQ))
{
if (dsp->ws_lpIQ0) { free(dsp->ws_lpIQ0); dsp->ws_lpIQ0 = NULL; }
if (dsp->ws_lpIQ1) { free(dsp->ws_lpIQ1); dsp->ws_lpIQ1 = NULL; }
if (dsp->lpIQ_buf) { free(dsp->lpIQ_buf); dsp->lpIQ_buf = NULL; }
}
// FM lowpass
if (dsp->opt_lp & LP_FM)
{
if (dsp->ws_lpFM) { free(dsp->ws_lpFM); dsp->ws_lpFM = NULL; }
if (dsp->lpFM_buf) { free(dsp->lpFM_buf); dsp->lpFM_buf = NULL; }
}
// IQFM lowpass
if (dsp->opt_lp & LP_IQFM)
{
if (dsp->ws_lpIQFM) { free(dsp->ws_lpIQFM); dsp->ws_lpIQFM = NULL; }
if (dsp->lpIQFM_buf) { free(dsp->lpIQFM_buf); dsp->lpIQFM_buf = NULL; }
}
if (dsp->fm_buffer) { free(dsp->fm_buffer); dsp->fm_buffer = NULL; }
return 0;
}
/* ------------------------------------------------------------------------------------ */
static
int find_header(dsp_t *dsp, float thres, int hdmax, int bitofs, int opt_dc) {
ui32_t k = 0;
ui32_t mvpos0 = 0;
int mp;
int header_found = 0;
int herrs;
while ( f32buf_sample(dsp, 0) != EOF ) {
k += 1;
if (k >= dsp->K-4) {
mvpos0 = dsp->mv_pos;
mp = getCorrDFT(dsp); // correlation score -> dsp->mv
//if (option_auto == 0 && dsp->mv < 0) mv = 0;
k = 0;
}
else {
dsp->mv = 0.0;
continue;
}
if ( dsp->mv > thres || dsp->mv < -thres ||
dsp->mv2 > thres || dsp->mv2 < -thres )
{
if (dsp->opt_dc) {
dsp->Df += dsp->dDf*0.5;
if (dsp->opt_iq) {
if (fabs(dsp->dDf) > 20*1e3) { // L-band
if (dsp->locked) {
dsp->locked = 0;
dsp->ws_lpIQ = dsp->ws_lpIQ0;
}
}
else {
if (dsp->locked == 0) {
dsp->locked = 1;
dsp->ws_lpIQ = dsp->ws_lpIQ1;
}
}
}
}
if (dsp->mv_pos > mvpos0) {
header_found = 0;
herrs = headcmp(dsp, opt_dc);
if (herrs <= hdmax) header_found = 1; // max bitfehler in header
if (header_found) return 1;
}
}
}
return EOF;
}
/* ------------------------------------------------------------------------------------ */
static float cmp_hdb(hdb_t *hdb) { // bit-errors?
int i, j;
int headlen = hdb->len;
int berrs1 = 0, berrs2 = 0;
i = 0;
j = hdb->bufpos;
while (i < headlen) {
if (j < 0) j = headlen-1;
if (hdb->buf[j] != hdb->hdr[headlen-1-i]) berrs1 += 1;
j--;
i++;
}
i = 0;
j = hdb->bufpos;
while (i < headlen) {
if (j < 0) j = headlen-1;
if ((hdb->buf[j]^0x01) != hdb->hdr[headlen-1-i]) berrs2 += 1;
j--;
i++;
}
if (berrs2 < berrs1) return (-headlen+berrs2)/(float)headlen;
else return ( headlen-berrs1)/(float)headlen;
return 0;
}
static float corr_softhdb(hdb_t *hdb) { // max score in window probably not needed
int i, j;
int headlen = hdb->len;
double sum = 0.0;
double normx = 0.0,
normy = 0.0;
float x, y;
i = 0;
j = hdb->bufpos + 1;
while (i < headlen) {
if (j >= headlen) j = 0;
x = hdb->sbuf[j];
y = 2.0*(hdb->hdr[i]&0x1) - 1.0;
sum += y * hdb->sbuf[j];
normx += x*x;
normy += y*y;
j++;
i++;
}
sum /= sqrt(normx*normy);
return sum;
}
static
int f32soft_read(FILE *fp, float *s) {
unsigned int word = 0;
short *b = (short*)&word;
float *f = (float*)&word;
int bps = 32;
if (fread( &word, bps/8, 1, fp) != 1) return EOF;
if (bps == 32) {
*s = *f;
}
else {
if (bps == 8) { *b -= 128; }
*s = *b/128.0;
if (bps == 16) { *s /= 256.0; }
}
return 0;
}
static
int find_softbinhead(FILE *fp, hdb_t *hdb, float *score) {
int headlen = hdb->len;
float sbit;
float mv;
//*score = 0.0;
while ( f32soft_read(fp, &sbit) != EOF )
{
hdb->bufpos = (hdb->bufpos+1) % headlen;
hdb->sbuf[hdb->bufpos] = sbit;
mv = corr_softhdb(hdb);
if ( fabs(mv) > hdb->ths ) {
*score = mv;
return 1;
}
}
return EOF;
}
// -------------------------------------------------------------------------------------------------
/* ------------------------------------------------------------------------------------------------- */
typedef struct {
i8_t vbs; // verbose output
i8_t raw; // raw frames
i8_t crc; // CRC check output
i8_t ecc; //
i8_t sat; // GPS sat data
i8_t ptu; // PTU: temperature humidity (pressure)
i8_t dwp; // PTU derived: dew point
i8_t inv;
i8_t aut;
i8_t jsn; // JSON output (auto_rx)
i8_t slt; // silent (only raw/json)
} option_t;
/* -------------------------------------------------------------------------- */
#define BAUD_RATE (9616.0) // 9616..9618
#define BITS (1+8+1) // 8N1 = 10bit/byte
// CA CA CA 24 52
static char header[] = "0010100111""0010100111""0010100111""0001001001""0010010101";
// CA CA CA 24 52 54
static char rawheader54[] = "0010100111""0010100111""0010100111""0001001001""0010010101";//"0001010101";
// CA CA CA 24 52 4D
static char rawheader4D[] = "0010100111""0010100111""0010100111""0001001001""0010010101";//"0101100101";
#define SYNCLEN 40
// moeglicherweise auch anderes sync-byte als 0xCA moeglich
static char sync[] = "0010100111""0010100111""0010100111""0010100111"; // CA CA CA CA
#define FRAMESTART 0
#define FRMSTART (2*BITS) // < header_len
#define FRAME_LEN (176) //(960+2) // max; min 36+3 GPS
#define BITFRAME_LEN (FRAME_LEN*BITS)
typedef struct {
int frnr;
int prev_frnr;
ui32_t id;
int week; int gpstow;
int jahr; int monat; int tag;
int wday;
int std; int min; float sek;
double lat; double lon; double alt;
double vH; double vD; double vV;
double vE; double vN; double vU;
char frame_bits[BITFRAME_LEN +9];
ui8_t frame_bytes[FRAME_LEN]; // = { 0x24, 0x54, 0x00, 0x00}; // dataheader
//int freq;
int jsn_freq; // freq/kHz (SDR)
option_t option;
} gpx_t;
static int findsync(gpx_t *gpx, int pos) {
int i = 0;
int j = pos-SYNCLEN;
if (j < 0) return 0;
while (i < SYNCLEN) {
if (gpx->frame_bits[j+i] != sync[i]) break;
i++;
}
if (i == SYNCLEN) return 1;
return 0;
}
static int bits2bytes(char *bitstr, ui8_t *bytes) {
int i, bit, d, byteval;
int bitpos, bytepos;
bitpos = 0;
bytepos = 0;
while (bytepos < FRAME_LEN) {
byteval = 0;
d = 1;
for (i = 1; i < BITS-1; i++) {
bit = *(bitstr+bitpos+i); /* little endian */
//bit = *(bitstr+bitpos+BITS-1-i); /* big endian */
if (bit == '\0') goto frame_end;
if (bit == '1') byteval += d;
else /*if ((bit == '0') */ byteval += 0;
d <<= 1;
}
bitpos += BITS;
bytes[bytepos++] = byteval;
}
frame_end:
for (i = bytepos; i < FRAME_LEN; i++) bytes[i] = 0;
return bytepos;
}
/* -------------------------------------------------------------------------- */
static int crc16_0(ui8_t frame[], int len) {
int crc16poly = 0x1021;
int rem = 0x0, i, j;
int byte;
for (i = 0; i < len; i++) {
byte = frame[i];
rem = rem ^ (byte << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
}
else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
return rem;
}
#define OFS 2 // (0x2452 ..)
#define pos_SondeID (OFS+0x02) // 2 byte (LSB)
#define pos_FrameNb (OFS+0x04) // 2 byte
//GPS Position
#define pos_GPSTOW (OFS+0x08) // 4 byte, subframe 0x(2452)54
#define pos_GPSlat (OFS+0x10) // 4 byte, subframe 0x(2452)54
#define pos_GPSlon (OFS+0x14) // 4 byte, subframe 0x(2452)54
#define pos_GPSalt (OFS+0x18) // 4 byte, subframe 0x(2452)54
//GPS Velocity East-North-Up (ENU)
#define pos_GPSvO (OFS+0x1C) // 3 byte, subframe 0x(2452)54
#define pos_GPSvN (OFS+0x1F) // 3 byte, subframe 0x(2452)54
#define pos_GPSvV (OFS+0x22) // 3 byte, subframe 0x(2452)54
// full 1680MHz-ID, config-subblock:sonde_id
#define pos_FullID (OFS+0x30) // 2+2 byte (LSB,MSB), subframe 0x(2452)4D
static int check_CRC(gpx_t *gpx, int len) {
ui32_t crclen = 0,
crcdat = 0;
/*
if (frame_bytes[OFS] == 0x4D) crclen = 67;
else if (frame_bytes[OFS] == 0x54) crclen = 172; // 172, 146? variable? Mk2a, LMS6-1680?
else crclen = len;
*/
crclen = len;
crcdat = (gpx->frame_bytes[crclen]<<8) | gpx->frame_bytes[crclen+1];
if ( crcdat != crc16_0(gpx->frame_bytes, crclen) ) {
return 1; // CRC NO
}
else return 0; // CRC OK
}
static int get_FrameNb(gpx_t *gpx) {
gpx->frnr = (gpx->frame_bytes[pos_FrameNb] << 8) + gpx->frame_bytes[pos_FrameNb+1];
return 0;
}
//char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
static char weekday[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
static int get_GPStime(gpx_t *gpx) {
int i;
int gpstime = 0, // 32bit
day;
float ms;
gpstime = 0;
for (i = 0; i < 4; i++) {
gpstime |= gpx->frame_bytes[pos_GPSTOW + i] << (8*(3-i));
}
gpx->gpstow = gpstime;
ms = gpstime % 1000;
gpstime /= 1000;
day = gpstime / (24 * 3600);
gpstime %= (24*3600);
if ((day < 0) || (day > 6)) return -1;
gpx->wday = day;
gpx->std = gpstime / 3600;
gpx->min = (gpstime % 3600) / 60;
gpx->sek = gpstime % 60 + ms/1000.0;
return 0;
}
static double B60B60 = 0xB60B60; // 2^32/360 = 0xB60B60.xxx
static int get_GPSlat(gpx_t *gpx) {
int i;
int gpslat;
gpslat = 0;
for (i = 0; i < 4; i++) {
gpslat |= gpx->frame_bytes[pos_GPSlat + i] << (8*(3-i));
}
gpx->lat = gpslat / (double)B60B60;
return 0;
}
static int get_GPSlon(gpx_t *gpx) {
int i;
int gpslon;
gpslon = 0;
for (i = 0; i < 4; i++) {
gpslon |= gpx->frame_bytes[pos_GPSlon + i] << (8*(3-i));
}
gpx->lon = gpslon / (double)B60B60;
return 0;
}
static int get_GPSalt(gpx_t *gpx) {
int i;
int gpsheight;
gpsheight = 0;
for (i = 0; i < 4; i++) {
gpsheight |= gpx->frame_bytes[pos_GPSalt + i] << (8*(3-i));
}
gpx->alt = gpsheight / 1000.0;
if (gpx->alt < -100 || gpx->alt > 60000) return -1;
return 0;
}
static int get_GPSvel24(gpx_t *gpx) {
ui8_t *gpsVel_bytes;
int vel24;
double vx, vy, vz, dir; //, alpha;
gpsVel_bytes = gpx->frame_bytes+pos_GPSvO;
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vx = vel24 / 1e3; // ost
gpsVel_bytes = gpx->frame_bytes+pos_GPSvN;
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vy= vel24 / 1e3; // nord
gpsVel_bytes = gpx->frame_bytes+pos_GPSvV;
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vz = vel24 / 1e3; // hoch
gpx->vE = vx;
gpx->vN = vy;
gpx->vU = vz;
gpx->vH = sqrt(vx*vx+vy*vy);
/*
alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts)
dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht
if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t)
gpx->vD2 = dir;
*/
dir = atan2(vx, vy) * 180 / M_PI;
if (dir < 0) dir += 360;
gpx->vD = dir;
gpx->vV = vz;
return 0;
}
static void print_frame(gpx_t *gpx, int len, dsp_t *dsp) {
int i, crc_err = 0;
int flen = len/BITS;
for (i = len; i < BITFRAME_LEN; i++) gpx->frame_bits[i] = 0; // oder: '0'
bits2bytes(gpx->frame_bits, gpx->frame_bytes);
while (flen > 2 && gpx->frame_bytes[flen-1] == 0xCA) flen--; // if crc != 0xYYCA ...
crc_err = check_CRC(gpx, flen-2);
if (crc_err) { // crc_bytes == sync_bytes?
crc_err = check_CRC(gpx, flen-1);
if (crc_err == 0) flen += 1;
else {
crc_err = check_CRC(gpx, flen);
if (crc_err == 0) flen += 2;
}
}
if (gpx->option.raw)
{
for (i = 0; i < flen; i++) printf("%02x ", gpx->frame_bytes[i]);
if (gpx->option.crc) {
if (crc_err==0) printf(" [OK]"); else printf(" [NO]");
}
printf("\n");
}
else //
{
if (gpx->frame_bytes[OFS] == 0x4D && len/BITS > pos_FullID+4) {
if ( !crc_err ) {
if (gpx->frame_bytes[pos_SondeID] == gpx->frame_bytes[pos_FullID] &&
gpx->frame_bytes[pos_SondeID+1] == gpx->frame_bytes[pos_FullID+1]) {
ui32_t __id = (gpx->frame_bytes[pos_FullID+2]<<24) | (gpx->frame_bytes[pos_FullID+3]<<16)
| (gpx->frame_bytes[pos_FullID] << 8) | gpx->frame_bytes[pos_FullID+1];
gpx->id = __id;
}
}
}
if (gpx->frame_bytes[OFS] == 0x54 && len/BITS > pos_GPSalt+4) {
get_FrameNb(gpx);
get_GPStime(gpx);
get_GPSlat(gpx);
get_GPSlon(gpx);
get_GPSalt(gpx);
if (gpx->option.vbs >= 2) {
printf("<");
printf("s=%+.2f", dsp->mv);
if (dsp->opt_dc && dsp->opt_iq) {
//printf(" f=%+.4f", -dsp->xlt_fq);
printf(" Df=%+.1fkHz", dsp->Df/1e3);
if (gpx->option.vbs == 3) {
printf(" (IF=%+.4f,", dsp->Df/(double)dsp->sr);
printf("IQ=%+.4f)", dsp->Df/(double)dsp->sr_base);
}
}
printf("> ");
}
if ( !crc_err ) {
ui32_t _id = (gpx->frame_bytes[pos_SondeID]<<8) | gpx->frame_bytes[pos_SondeID+1];
if ((gpx->id & 0xFFFF) != _id) gpx->id = _id;
}
if (gpx->option.vbs && !crc_err) {
if (gpx->id & 0xFFFF0000) printf(" (%u)", gpx->id);
else if (gpx->id) printf(" (0x%04X)", gpx->id);
}
printf(" [%5d] ", gpx->frnr);
printf("%s ", weekday[gpx->wday]);
printf("%02d:%02d:%06.3f ", gpx->std, gpx->min, gpx->sek); // falls Rundung auf 60s: Ueberlauf
printf(" lat: %.5f ", gpx->lat);
printf(" lon: %.5f ", gpx->lon);
printf(" alt: %.2fm ", gpx->alt);
get_GPSvel24(gpx);
printf(" vH: %.1fm/s D: %.1f vV: %.1fm/s ", gpx->vH, gpx->vD, gpx->vV);
//if (gpx->option.verbose == 2) printf(" (%.1f ,%.1f,%.1f) ", gpx->vE, gpx->vN, gpx->vU);
if (gpx->option.crc) {
if (crc_err==0) printf(" [OK]"); else printf(" [NO]");
}
printf("\n");
if (gpx->option.jsn) {
// Print JSON output required by auto_rx.
if (crc_err==0 && (gpx->id & 0xFFFF0000)) { // CRC-OK and FullID
if (gpx->prev_frnr != gpx->frnr) { //|| gpx->id != _id0
// UTC oder GPS?
char *ver_jsn = NULL;
printf("{ \"type\": \"%s\"", "LMS");
printf(", \"frame\": %d, \"id\": \"LMS6-%d\", \"datetime\": \"%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f",
gpx->frnr, gpx->id, gpx->std, gpx->min, gpx->sek, gpx->lat, gpx->lon, gpx->alt, gpx->vH, gpx->vD, gpx->vV );
printf(", \"subtype\": \"%s\"", "MK2A");
if (gpx->jsn_freq > 0) {
printf(", \"freq\": %d", gpx->jsn_freq);
}
// Reference time/position
printf(", \"ref_datetime\": \"%s\"", "GPS" ); // {"GPS", "UTC"} GPS-UTC=leap_sec
printf(", \"ref_position\": \"%s\"", "GPS" ); // {"GPS", "MSL"} GPS=ellipsoid , MSL=geoid
#ifdef VER_JSN_STR
ver_jsn = VER_JSN_STR;
#endif
if (ver_jsn && *ver_jsn != '\0') printf(", \"version\": \"%s\"", ver_jsn);
printf(" }\n");
printf("\n");
gpx->prev_frnr = gpx->frnr;
}
}
}
}
}
}
int main(int argc, char **argv) {
FILE *fp;
char *fpname;
int cfreq = -1;
float baudrate = -1;
float _bl = -1.0;
float _h = 10.4;
float lpIQ_bw = 180e3;
int option_softin = 0;
int option_pcmraw = 0;
int sel_wavch = 0;
int wavloaded = 0;
int option_min = 0;
int option_iq = 0;
int option_iqdc = 0;
int option_lp = 0;
int option_dc = 0;
int option_decFM = 0;
int option_noLUT = 0;
int k;
int bit;
int bitpos = 0;
int bitQ;
int pos;
hsbit_t hsbit, hsbit1;
int header_found = 0;
float thres = 0.7;
float _mv = 0.0;
int symlen = 1;
int bitofs = 0; // fm:0 , iq:+1
int shift = 0;
pcm_t pcm = {0};
dsp_t dsp = {0}; //memset(&dsp, 0, sizeof(dsp));
gpx_t gpx = {0};
hdb_t hdb = {0};
#ifdef CYGWIN
_setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY);
#endif
setbuf(stdout, NULL);
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " -r, --raw\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
gpx.option.vbs = 1;
}
else if ( (strcmp(*argv, "-vv") == 0) ) gpx.option.vbs = 2;
else if ( (strcmp(*argv, "-vvv") == 0) ) gpx.option.vbs = 3;
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
gpx.option.raw = 1;
}
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
gpx.option.inv = 1;
}
else if (strcmp(*argv, "--crc") == 0) { gpx.option.crc = 1; }
else if (strcmp(*argv, "--ths") == 0) {
++argv;
if (*argv) {
thres = atof(*argv);
}
else return -1;
}
else if ( (strcmp(*argv, "--br") == 0) ) {
++argv;
if (*argv) {
baudrate = atof(*argv);
if (baudrate < 9400 || baudrate > 9800) baudrate = BAUD_RATE; // 9616..9618
}
else return -1;
}
else if ( (strcmp(*argv, "-d") == 0) ) {
++argv;
if (*argv) {
shift = atoi(*argv);
if (shift > 4) shift = 4;
if (shift < -4) shift = -4;
}
else return -1;
}
else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod
else if (strcmp(*argv, "--iqdc") == 0) { option_iqdc = 1; } // iq-dc removal (iq0,2,3)
else if (strcmp(*argv, "--IQ") == 0 || strcmp(*argv, "--iq") == 0) { // fq baseband -> IF (rotate from and decimate)
double fq = 0.0; // --IQ <fq> , -0.5 < fq < 0.5
if (strcmp(*argv, "--IQ") == 0) option_iq = 5; else option_iq = 6;
++argv;
if (*argv) fq = atof(*argv);
else return -1;
if (fq < -0.5) fq = -0.5;
if (fq > 0.5) fq = 0.5;
dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t)
}
else if (strcmp(*argv, "--lpIQ") == 0) { option_lp |= LP_IQ; } // IQ lowpass
else if (strcmp(*argv, "--lpbw") == 0) { // IQ lowpass BW / kHz
double bw = 0.0;
++argv;
if (*argv) bw = atof(*argv);
else return -1;
if (bw > 100.0 && bw < 240.0) lpIQ_bw = bw*1e3;
option_lp |= LP_IQ;
}
else if (strcmp(*argv, "--lpFM") == 0) { option_lp |= LP_FM; } // FM lowpass
else if (strcmp(*argv, "--decFM") == 0) { // FM decimation
option_decFM = 4;
}
else if (strcmp(*argv, "--decFM2") == 0) { // FM decimation
option_decFM = 2;
}
else if (strcmp(*argv, "--decFM1") == 0) { // FM decimation
option_decFM = 1;
}
else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; }
else if (strcmp(*argv, "--noLUT") == 0) { option_noLUT = 1; }
else if (strcmp(*argv, "--min") == 0) {
option_min = 1;
}
else if (strcmp(*argv, "--json") == 0) {
gpx.option.jsn = 1;
gpx.option.crc = 1;
if (!gpx.option.vbs) gpx.option.vbs = 1;
}
else if (strcmp(*argv, "--jsn_cfq") == 0) {
int frq = -1; // center frequency / Hz
++argv;
if (*argv) frq = atoi(*argv); else return -1;
if (frq < 300000000) frq = -1; // L-band, > 1600 MHz
cfreq = frq;
}
else if (strcmp(*argv, "-") == 0) {
int sample_rate = 0, bits_sample = 0, channels = 0;
++argv;
if (*argv) sample_rate = atoi(*argv); else return -1;
++argv;
if (*argv) bits_sample = atoi(*argv); else return -1;
channels = 2;
if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) {
fprintf(stderr, "- <sr> <bs>\n");
return -1;
}
pcm.sr = sample_rate;
pcm.bps = bits_sample;
pcm.nch = channels;
option_pcmraw = 1;
}
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
gpx.jsn_freq = 0;
if (cfreq > 0) gpx.jsn_freq = (cfreq+500)/1000; ////
if (!option_softin) {
if (option_iq == 0 && option_pcmraw) {
fclose(fp);
fprintf(stderr, "error: raw data not IQ\n");
return -1;
}
if (option_iq) sel_wavch = 0;
pcm.sel_ch = sel_wavch;
if (option_pcmraw == 0) {
k = read_wav_header(&pcm, fp);
if ( k < 0 ) {
fclose(fp);
fprintf(stderr, "error: wav header\n");
return -1;
}
}
if (cfreq > 0) {
int fq_kHz = (cfreq - dsp.xlt_fq*pcm.sr + 500)/1e3;
gpx.jsn_freq = fq_kHz;
}
symlen = 1;
// init dsp
//
dsp.fp = fp;
dsp.sr = pcm.sr;
dsp.bps = pcm.bps;
dsp.nch = pcm.nch;
dsp.ch = pcm.sel_ch;
dsp.br = (float)BAUD_RATE;
if (option_decFM) {
if (option_iq == 5) option_lp |= LP_IQFM;
else option_lp |= LP_FM;
if (dsp.sr > 4*44000) dsp.opt_fmdec = 1;
}
dsp.sps = (float)dsp.sr/dsp.br;
dsp.decFM = 1;
if (dsp.opt_fmdec) {
dsp.decFM = option_decFM;
while (dsp.sr % dsp.decFM > 0 && dsp.decFM > 1) dsp.decFM /= 2;
dsp.sps /= (float)dsp.decFM;
}
if (option_iq == 5 && option_dc) option_lp |= LP_FM;
dsp.symlen = symlen;
dsp.symhd = 1;
dsp._spb = dsp.sps*symlen;
dsp.hdr = header;
dsp.hdrlen = strlen(header);
dsp.BT = 1.0; // bw/time (ISI) // 1.0..2.0
dsp.h = _h; // 10.4..10.7;
dsp.opt_iq = option_iq;
dsp.opt_iqdc = option_iqdc;
dsp.opt_lp = option_lp;
dsp.lpIQ_bw = lpIQ_bw; // IF lowpass bandwidth
dsp.lpFM_bw = 10e3; // FM audio lowpass iq0: 10e3 , iq 0.0: 7e3-8e3
if (option_iq == 6) dsp.lpFM_bw = 6.8e3;
else if (option_iq == 5) dsp.lpFM_bw = 8e3;
dsp.opt_dc = option_dc;
dsp.opt_IFmin = option_min;
if ( dsp.sps < 8 ) {
fprintf(stderr, "note: sample rate low (%.1f sps)\n", dsp.sps);
}
if (baudrate > 0) {
dsp.br = (float)baudrate;
dsp.sps = (float)dsp.sr/dsp.br;
fprintf(stderr, "sps corr: %.4f\n", dsp.sps);
}
// LUT faster, however frequency correction after decimation
// LUT recommonded if decM > 2
//
if (option_noLUT && option_iq >= 5) dsp.opt_nolut = 1; else dsp.opt_nolut = 0;
k = init_buffers_Lband(&dsp);
if ( k < 0 ) {
fprintf(stderr, "error: init buffers\n");
return -1;
}
if (option_iq && !dsp.opt_fmdec) bitofs += 1;
bitofs += shift;
_bl = 0.7*dsp.sps/2.0;
if (_bl < 2.0) _bl = -1;
if (dsp.opt_fmdec) _bl = -1;
}
else {
// init circular header bit buffer
hdb.hdr = header;
hdb.len = strlen(header);
hdb.thb = 1.0 - 3.1/(float)hdb.len; // 1.0-max_bit_errors/hdrlen
hdb.bufpos = -1;
hdb.buf = calloc(hdb.len, sizeof(char));
if (hdb.buf == NULL) {
fprintf(stderr, "error: malloc\n");
return -1;
}
hdb.ths = 0.8; // caution/test false positive
hdb.sbuf = calloc(hdb.len, sizeof(float));
if (hdb.sbuf == NULL) {
fprintf(stderr, "error: malloc\n");
return -1;
}
}
strncpy(gpx.frame_bits, header+strlen(header)-FRMSTART, FRMSTART);
pos = FRMSTART;
while ( 1 )
{
if (option_softin) {
header_found = find_softbinhead(fp, &hdb, &_mv);
}
else { // FM-audio:
header_found = find_header(&dsp, thres, 1, bitofs, dsp.opt_dc); // optional 2nd pass: dc=0
_mv = dsp.mv;
}
if (header_found == EOF) break;
// mv == correlation score
if (_mv*(0.5-gpx.option.inv) < 0) {
if (gpx.option.aut == 0) header_found = 0;
gpx.option.inv ^= 0x1;
}
if (header_found)
{
bitpos = 0;
pos = FRMSTART;
while ( pos < BITFRAME_LEN && !findsync(&gpx, pos))
{
if (option_softin) {
float s = 0.0;
bitQ = f32soft_read(fp, &s);
if (bitQ != EOF) {
bit = (s>=0.0);
}
}
else {
float bl = -1;
if (option_iq > 2) bl = _bl;
bitQ = read_softbit2p(&dsp, &hsbit, 0, bitofs, bitpos, bl, 0, &hsbit1); // symlen=2
bit = hsbit.hb;
}
if ( bitQ == EOF ) break; // liest 2x EOF
if (gpx.option.inv) {
bit ^= 1;
hsbit.hb ^= 1;
hsbit.sb = -hsbit.sb;
}
gpx.frame_bits[pos] = 0x30 + (hsbit.hb & 1);
bitpos += 1;
pos++;
}
gpx.frame_bits[pos] = '\0';
print_frame(&gpx, pos, &dsp);//FRAME_LEN
header_found = 0;
pos = FRMSTART;
}
}
if (!option_softin) free_buffers(&dsp);
else {
if (hdb.buf) { free(hdb.buf); hdb.buf = NULL; }
}
printf("\n");
fclose(fp);
return 0;
}