RS-tracker/lms6/lms6ecc.c

1095 wiersze
27 KiB
C

/*
LMS6
(403 MHz)
gcc lms6ecc.c -lm -o lms6ecc
./lms6ecc -v -b --ecc2 <audio.wav>
*/
#include <stdio.h>
#include <string.h>
#include <math.h>
typedef unsigned char ui8_t;
typedef unsigned short ui16_t;
typedef unsigned int ui32_t;
#include "bch_ecc.c" // RS/ecc/
int option_verbose = 0, // ausfuehrliche Anzeige
option_raw = 0, // rohe Frames
option_ecc = 0,
option_b = 0,
option_inv = 0, // invertiert Signal
option_res = 0, // genauere Bitmessung
wavloaded = 0;
/* -------------------------------------------------------------------------- */
#define BAUD_RATE 4800
int sample_rate = 0, bits_sample = 0, channels = 0;
float samples_per_bit = 0;
int findstr(char *buf, char *str, int pos) {
int i;
for (i = 0; i < 4; i++) {
if (buf[(pos+i)%4] != str[i]) break;
}
return i;
}
int read_wav_header(FILE *fp) {
char txt[4+1] = "\0\0\0\0";
unsigned char dat[4];
int byte, p=0;
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "RIFF", 4)) return -1;
if (fread(txt, 1, 4, fp) < 4) return -1;
// pos_WAVE = 8L
if (fread(txt, 1, 4, fp) < 4) return -1;
if (strncmp(txt, "WAVE", 4)) return -1;
// pos_fmt = 12L
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "fmt ", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
channels = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 4, fp) < 4) return -1;
memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24);
if (fread(dat, 1, 4, fp) < 4) return -1;
if (fread(dat, 1, 2, fp) < 2) return -1;
//byte = dat[0] + (dat[1] << 8);
if (fread(dat, 1, 2, fp) < 2) return -1;
bits_sample = dat[0] + (dat[1] << 8);
// pos_dat = 36L + info
for ( ; ; ) {
if ( (byte=fgetc(fp)) == EOF ) return -1;
txt[p % 4] = byte;
p++; if (p==4) p=0;
if (findstr(txt, "data", p) == 4) break;
}
if (fread(dat, 1, 4, fp) < 4) return -1;
fprintf(stderr, "sample_rate: %d\n", sample_rate);
fprintf(stderr, "bits : %d\n", bits_sample);
fprintf(stderr, "channels : %d\n", channels);
if ((bits_sample != 8) && (bits_sample != 16)) return -1;
samples_per_bit = sample_rate/(float)BAUD_RATE;
fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit);
return 0;
}
#define EOF_INT 0x1000000
unsigned long sample_count = 0;
int read_signed_sample(FILE *fp) { // int = i32_t
int byte, i, ret; // EOF -> 0x1000000
for (i = 0; i < channels; i++) {
// i = 0: links bzw. mono
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) ret = byte;
if (bits_sample == 16) {
byte = fgetc(fp);
if (byte == EOF) return EOF_INT;
if (i == 0) ret += byte << 8;
}
}
sample_count++;
if (bits_sample == 8) return ret-128; // 8bit: 00..FF, centerpoint 0x80=128
if (bits_sample == 16) return (short)ret;
return ret;
}
int par=1, par_alt=1;
int read_bits_fsk(FILE *fp, int *bit, int *len) {
static int sample;
int n, y0;
float l, x1;
static float x0;
n = 0;
do{
y0 = sample;
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++;
par_alt = par;
par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
n++;
} while (par*par_alt > 0);
if (!option_res) l = (float)n / samples_per_bit;
else { // genauere Bitlaengen-Messung
x1 = sample/(float)(sample-y0); // hilft bei niedriger sample rate
l = (n+x0-x1) / samples_per_bit; // meist mehr frames (nicht immer)
x0 = x1;
}
*len = (int)(l+0.5);
if (!option_inv) *bit = (1+par_alt)/2; // oben 1, unten -1
else *bit = (1-par_alt)/2; // sdr#<rev1381?, invers: unten 1, oben -1
// *bit = (1+inv*par_alt)/2; // ausser inv=0
return 0;
}
double bitgrenze = 0;
int bitstart = 0;
int read_rawbit(FILE *fp, int *bit) {
int sample;
int n, sum;
sum = 0;
n = 0;
if (bitstart) {
n = 1; // d.h. bitgrenze = sample_count-1 (?)
bitgrenze = sample_count-1;
bitstart = 0;
}
bitgrenze += samples_per_bit;
do {
sample = read_signed_sample(fp);
if (sample == EOF_INT) return EOF;
//sample_count++; // in read_signed_sample()
//par = (sample >= 0) ? 1 : -1; // 8bit: 0..127,128..255 (-128..-1,0..127)
sum += sample;
n++;
} while (sample_count < bitgrenze); // n < samples_per_bit
if (sum >= 0) *bit = 1;
else *bit = 0;
if (option_inv) *bit ^= 1;
return 0;
}
/* -------------------------------------------------------------------------- */
#define BITS 8
#define HEADOFS 0
#define HEADLEN ((3*16)-HEADOFS)
// RS-ECC-block kann dazwischenfunken...
// (pp pp 24) 54 00 00 00 (7A..: SondeID, GPS, ...)
char header[] = /*"0000110110011000"*/"0011101100100000""0000000000000000""0000000000000000";//"0010010011110001";
// SondeID (?0x00?) 0x7A
#define FRAMESTART 0
#define FRAME_LEN (300) // 4800baud, 16bits/byte
#define BITFRAME_LEN (FRAME_LEN*BITS)
#define RAWBITFRAME_LEN (BITFRAME_LEN*2)
#define OVERLAP 64
#define FRM_MINLEN (255+3)
#define OFS 4
char frm_rawbits[RAWBITFRAME_LEN+OVERLAP*BITS*2+16 +8] = "0000000000000000";
char *frame_rawbits = frm_rawbits+16;
char frame_bits[BITFRAME_LEN+OVERLAP*BITS +8]; // init L-1 bits mit 0
ui8_t frame[FRAME_LEN+OVERLAP+5 +8] = { 0x24, 0x54, 0x00, 0x00, 0x00}; // header
ui8_t *frame_bytes = frame+OFS; // { 0x00, 0x7A, ... }
ui8_t *p_frame = frame;
// RS-SYNC
// (00) 58 f3 3f b8
// ................ 0000001011110011 1110110100100011 0110100000001011 0101110001011110
ui8_t rs_sync[] = { 0x00, 0x58, 0xf3, 0x3f, 0xb8};
char buf[HEADLEN];
int bufpos = -1;
#define L 8
char polyA[] = "10010101"; // 0x95: x^7+x^4+x^2+1 = (x+1)(x^6+x^5+x^4+x+1) = (x+1)qA
char polyB[] = "00100010"; // 0x22: x^5+x = (x+1)(x^4+x^3+x^2+x)=x(x+1)^3 = (x+1)qB
#define K 7 // d_f=6
char qA[] = "1110011"; // 0x73: x^6+x^5+x^4+x+1
char qB[] = "0011110"; // 0x1e: x^4+x^3+x^2+x
char vit_rawbits[RAWBITFRAME_LEN+OVERLAP*BITS*2 +8];
#define N (1 << K)
#define M (1 << (K-1))
typedef struct {
int bIn;
int codeIn;
int w;
int prevState;
} states_t;
states_t vit_state[RAWBITFRAME_LEN+OVERLAP +8][M];
states_t vit_d[N];
char vit_code[N];
int vit_initCodes() {
int cA, cB;
int i, bits;
for (bits = 0; bits < N; bits++) {
cA = 0;
cB = 0;
for (i = 0; i < K; i++) {
cA ^= (qA[K-1-i]&1) & ((bits >> i)&1);
cB ^= (qB[K-1-i]&1) & ((bits >> i)&1);
}
vit_code[bits] = (cA<<1) | cB;
}
return 0;
}
int vit_dist(int c, char *rc) {
return (((c>>1)^rc[0])&1) + ((c^rc[1])&1);
}
int vit_start(char *rc) {
int t, m, j, c, d;
t = K-1;
m = M;
while ( t > 0 ) { // t=0..K-2: nextState<M
for (j = 0; j < m; j++) {
vit_state[t][j].prevState = j/2;
}
t--;
m /= 2;
}
m = 2;
for (t = 1; t < K; t++) {
for (j = 0; j < m; j++) {
c = vit_code[j];
vit_state[t][j].bIn = j % 2;
vit_state[t][j].codeIn = c;
d = vit_dist( c, rc+2*(t-1) );
vit_state[t][j].w = vit_state[t-1][vit_state[t][j].prevState].w + d;
}
m *= 2;
}
return t;
}
int vit_next(int t, char *rc) {
int b, nstate;
int j, index;
for (j = 0; j < M; j++) {
for (b = 0; b < 2; b++) {
nstate = j*2 + b;
vit_d[nstate].bIn = b;
vit_d[nstate].codeIn = vit_code[nstate];
vit_d[nstate].prevState = j;
vit_d[nstate].w = vit_state[t][j].w + vit_dist( vit_d[nstate].codeIn, rc );
}
}
for (j = 0; j < M; j++) {
if ( vit_d[j].w <= vit_d[j+M].w ) index = j; else index = j+M;
vit_state[t+1][j] = vit_d[index];
}
return 0;
}
int vit_path(int j, int t) {
int c;
vit_rawbits[2*t] = '\0';
while (t > 0) {
c = vit_state[t][j].codeIn;
vit_rawbits[2*t -2] = 0x30 + ((c>>1) & 1);
vit_rawbits[2*t -1] = 0x30 + (c & 1);
j = vit_state[t][j].prevState;
t--;
}
return 0;
}
int viterbi(char *rc) {
int t, tmax;
int j, j_min, w_min;
vit_start(rc);
tmax = strlen(rc)/2;
for (t = K-1; t < tmax; t++)
{
vit_next(t, rc+2*t);
}
w_min = -1;
for (j = 0; j < M; j++) {
if (w_min < 0) {
w_min = vit_state[tmax][j].w;
j_min = j;
}
if (vit_state[tmax][j].w < w_min) {
w_min = vit_state[tmax][j].w;
j_min = j;
}
}
vit_path(j_min, tmax);
return 0;
}
// ------------------------------------------------------------------------
int deconv(char* rawbits, char *bits) {
int j, n, bitA, bitB;
char *p;
int len;
int errors = 0;
int m = L-1;
len = strlen(rawbits);
for (j = 0; j < m; j++) bits[j] = '0';
n = 0;
while ( 2*(m+n) < len ) {
p = rawbits+2*(m+n);
bitA = bitB = 0;
for (j = 0; j < m; j++) {
bitA ^= (bits[n+j]&1) & (polyA[j]&1);
bitB ^= (bits[n+j]&1) & (polyB[j]&1);
}
if ( (bitA^(p[0]&1))==(polyA[m]&1) && (bitB^(p[1]&1))==(polyB[m]&1) ) bits[n+m] = '1';
else if ( (bitA^(p[0]&1))==0 && (bitB^(p[1]&1))==0 ) bits[n+m] = '0';
else { // error: no error correction...
if ( (bitA^(p[0]&1))!=(polyA[m]&1) && (bitB^(p[1]&1))==(polyB[m]&1) ) bits[n+m] = 0x39;
else bits[n+m] = 0x38;
//if (n < 256) errors++; // nur bis Ende GPS-vel; alternativ: return pos 1. error
errors = n;
break;
}
n += 1;
}
bits[n+m] = '\0';
return errors;
}
// ------------------------------------------------------------------------
int crc16_0(ui8_t frame[], int len) {
int crc16poly = 0x1021;
int rem = 0x0, i, j;
int byte;
for (i = 0; i < len; i++) {
byte = frame[i];
rem = rem ^ (byte << 8);
for (j = 0; j < 8; j++) {
if (rem & 0x8000) {
rem = (rem << 1) ^ crc16poly;
}
else {
rem = (rem << 1);
}
rem &= 0xFFFF;
}
}
return rem;
}
int check_CRC(ui8_t frame[]) {
ui32_t crclen = 0,
crcdat = 0;
crclen = 221;
crcdat = (frame[crclen]<<8) | frame[crclen+1];
if ( crcdat != crc16_0(frame, crclen) ) {
return 1; // CRC NO
}
else return 0; // CRC OK
}
// ------------------------------------------------------------------------
void inc_bufpos() {
bufpos = (bufpos+1) % HEADLEN;
}
char cb_inv(char c) {
if (c == '0') return '1';
if (c == '1') return '0';
return c;
}
int compare2() {
int i, j;
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != header[HEADOFS+HEADLEN-1-i]) break;
j--;
i++;
}
if (i == HEADLEN) return 1;
i = 0;
j = bufpos;
while (i < HEADLEN) {
if (j < 0) j = HEADLEN-1;
if (buf[j] != cb_inv(header[HEADOFS+HEADLEN-1-i])) break;
j--;
i++;
}
if (i == HEADLEN) return -1;
return 0;
}
int bits2bytes(char *bitstr, ui8_t *bytes) {
int i, bit, d, byteval;
int len = strlen(bitstr)/8;
int bitpos, bytepos;
bitpos = 0;
bytepos = 0;
while (bytepos < len) {
byteval = 0;
d = 1;
for (i = 0; i < BITS; i++) {
bit=*(bitstr+bitpos+i); /* little endian */
//bit=*(bitstr+bitpos+7-i); /* big endian */
if ((bit == '1') || (bit == '9')) byteval += d;
else /*if ((bit == '0') || (bit == '8'))*/ byteval += 0;
d <<= 1;
}
bitpos += BITS;
bytes[bytepos++] = byteval & 0xFF;
}
//while (bytepos < FRAME_LEN+OVERLAP) bytes[bytepos++] = 0;
return 0;
}
/* -------------------------------------------------------------------------- */
typedef struct {
int frnr;
int sn;
int week; int gpstow;
int jahr; int monat; int tag;
int wday;
int std; int min; float sek;
double lat; double lon; double h;
double vH; double vD; double vV;
double vE; double vN; double vU;
//int freq;
} gpx_t;
gpx_t gpx;
gpx_t gpx0 = { 0 };
#define pos_SondeSN (OFS+0x00) // ?4 byte 00 7A....
#define pos_FrameNb (OFS+0x04) // 2 byte
//GPS Position
#define pos_GPSTOW (OFS+0x06) // 4 byte
#define pos_GPSlat (OFS+0x0E) // 4 byte
#define pos_GPSlon (OFS+0x12) // 4 byte
#define pos_GPSalt (OFS+0x16) // 4 byte
//#define pos_GPSweek 0x20 // 2 byte
//GPS Velocity East-North-Up (ENU)
#define pos_GPSvO (OFS+0x1A) // 3 byte
#define pos_GPSvN (OFS+0x1D) // 3 byte
#define pos_GPSvV (OFS+0x20) // 3 byte
int get_SondeSN() {
unsigned byte;
byte = (p_frame[pos_SondeSN]<<24) | (p_frame[pos_SondeSN+1]<<16)
| (p_frame[pos_SondeSN+2]<<8) | p_frame[pos_SondeSN+3];
gpx.sn = byte & 0xFFFFFF;
return 0;
}
int get_FrameNb() {
int i;
unsigned byte;
ui8_t frnr_bytes[2];
int frnr;
gpx = gpx0;
for (i = 0; i < 2; i++) {
byte = p_frame[pos_FrameNb + i];
frnr_bytes[i] = byte;
}
frnr = (frnr_bytes[0] << 8) + frnr_bytes[1] ;
gpx.frnr = frnr;
return 0;
}
char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"};
//char weekday[7][4] = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"};
int get_GPStime() {
int i;
unsigned byte;
ui8_t gpstime_bytes[4];
int gpstime = 0, // 32bit
day;
float ms;
for (i = 0; i < 4; i++) {
byte = p_frame[pos_GPSTOW + i];
gpstime_bytes[i] = byte;
}
gpstime = 0;
for (i = 0; i < 4; i++) {
gpstime |= gpstime_bytes[i] << (8*(3-i));
}
gpx.gpstow = gpstime;
ms = gpstime % 1000;
gpstime /= 1000;
day = gpstime / (24 * 3600);
gpstime %= (24*3600);
if ((day < 0) || (day > 6)) return -1;
gpx.wday = day;
gpx.std = gpstime / 3600;
gpx.min = (gpstime % 3600) / 60;
gpx.sek = gpstime % 60 + ms/1000.0;
return 0;
}
double B60B60 = 0xB60B60; // 2^32/360 = 0xB60B60.xxx
int get_GPSlat() {
int i;
unsigned byte;
ui8_t gpslat_bytes[4];
int gpslat;
double lat;
for (i = 0; i < 4; i++) {
byte = p_frame[pos_GPSlat + i];
if (byte > 0xFF) return -1;
gpslat_bytes[i] = byte;
}
gpslat = 0;
for (i = 0; i < 4; i++) {
gpslat |= gpslat_bytes[i] << (8*(3-i));
}
lat = gpslat / B60B60;
gpx.lat = lat;
return 0;
}
int get_GPSlon() {
int i;
unsigned byte;
ui8_t gpslon_bytes[4];
int gpslon;
double lon;
for (i = 0; i < 4; i++) {
byte = p_frame[pos_GPSlon + i];
if (byte > 0xFF) return -1;
gpslon_bytes[i] = byte;
}
gpslon = 0;
for (i = 0; i < 4; i++) {
gpslon |= gpslon_bytes[i] << (8*(3-i));
}
lon = gpslon / B60B60;
gpx.lon = lon;
return 0;
}
int get_GPSalt() {
int i;
unsigned byte;
ui8_t gpsheight_bytes[4];
int gpsheight;
double height;
for (i = 0; i < 4; i++) {
byte = p_frame[pos_GPSalt + i];
if (byte > 0xFF) return -1;
gpsheight_bytes[i] = byte;
}
gpsheight = 0;
for (i = 0; i < 4; i++) {
gpsheight |= gpsheight_bytes[i] << (8*(3-i));
}
height = gpsheight / 1000.0;
gpx.h = height;
if (height < -100 || height > 60000) return -1;
return 0;
}
int get_GPSvel24() {
int i;
unsigned byte;
ui8_t gpsVel_bytes[3];
int vel24;
double vx, vy, vz, dir; //, alpha;
for (i = 0; i < 3; i++) {
byte = p_frame[pos_GPSvO + i];
if (byte > 0xFF) return -1;
gpsVel_bytes[i] = byte;
}
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vx = vel24 / 1e3; // ost
for (i = 0; i < 3; i++) {
byte = p_frame[pos_GPSvN + i];
if (byte > 0xFF) return -1;
gpsVel_bytes[i] = byte;
}
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vy= vel24 / 1e3; // nord
for (i = 0; i < 3; i++) {
byte = p_frame[pos_GPSvV + i];
if (byte > 0xFF) return -1;
gpsVel_bytes[i] = byte;
}
vel24 = gpsVel_bytes[0] << 16 | gpsVel_bytes[1] << 8 | gpsVel_bytes[2];
if (vel24 > (0x7FFFFF)) vel24 -= 0x1000000;
vz = vel24 / 1e3; // hoch
gpx.vE = vx;
gpx.vN = vy;
gpx.vU = vz;
gpx.vH = sqrt(vx*vx+vy*vy);
/*
alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts)
dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht
if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t)
gpx.vD2 = dir;
*/
dir = atan2(vx, vy) * 180 / M_PI;
if (dir < 0) dir += 360;
gpx.vD = dir;
gpx.vV = vz;
return 0;
}
#define rs_N 255
#define rs_K 223
#define rs_R (rs_N-rs_K) // 32
ui8_t rs_cw[rs_N];
#define ECCBUF_LEN (3*FRAME_LEN+32)
ui8_t ecc_buf[ECCBUF_LEN];
int bufidx = 0;
ui8_t frm_bytes[FRAME_LEN+OVERLAP +8];
typedef struct {
int pos;
ui8_t bytes[FRAME_LEN+OVERLAP+5 +8];
} efb_t;
efb_t f0 = { 263, { 0x0 , 0x54, 0x00, 0x00, 0x00} };
efb_t f1 = { 0, { 0x24, 0x54, 0x00, 0x00, 0x00} };
#define kMAX 2
typedef struct {
int errs;
int fpos;
int epos;
} rs_bf_t;
rs_bf_t rsbf[kMAX];
int lms6_ecc(ui8_t *cw) {
int errors;
ui8_t err_pos[rs_R],
err_val[rs_R];
errors = rs_decode(cw, err_pos, err_val);
return errors;
}
void print_frame(int crc_err, int len, int pos) {
int i ,err=0;
if (p_frame[0] != 0)
{
if (option_raw) {
//if ( err==0 || err>8*(pos_GPSTOW+8) )
{
if (option_raw == 1) {
for (i = 0; i < pos+OFS; i++) printf("%02x ", p_frame[i]);
if (crc_err==0) printf(" [OK]"); else printf(" [NO]");
printf("\n");
}
else if (option_raw == 8) {
if (option_ecc) {
for (i = 0; i < len; i++) printf("%c", vit_rawbits[i]); printf("\n");
}
else {
for (i = 0; i < len; i++) printf("%c", frame_rawbits[i]); printf("\n");
}
}
}
}
else
{
//if ((p_frame[pos_SondeSN+1] & 0xF0) == 0x70) // ? beginnen alle SNs mit 0x7A.... bzw 80..... ?
if ( p_frame[pos_SondeSN+1] )
{
get_FrameNb();
get_GPStime();
get_SondeSN();
if (option_verbose) printf(" (%7d) ", gpx.sn);
printf(" [%5d] ", gpx.frnr);
printf("%s ", weekday[gpx.wday]);
printf("(%02d:%02d:%06.3f) ", gpx.std, gpx.min, gpx.sek); // falls Rundung auf 60s: Ueberlauf
get_GPSlat();
get_GPSlon();
err = get_GPSalt();
if (!err) {
printf(" lat: %.6f° ", gpx.lat);
printf(" lon: %.6f° ", gpx.lon);
printf(" alt: %.2fm ", gpx.h);
//if (option_verbose)
{
get_GPSvel24();
//if (option_verbose == 2) printf(" (%.1f ,%.1f,%.1f) ", gpx.vE, gpx.vN, gpx.vU);
printf(" vH: %.1fm/s D: %.1f° vV: %.1fm/s ", gpx.vH, gpx.vD, gpx.vV);
}
}
if (crc_err==0) printf(" [OK]"); else printf(" [NO]");
printf("\n");
}
}
}
}
void proc_frame(int len) {
char *rawbits = NULL;
int i, j, k, n;
int err = 0;
int errs = 0;
int crc_err = 0;
int flen;
int pos;
memset(rsbf, 0, sizeof(rsbf));
if ((len % 8) > 4) {
while (len % 8) frame_rawbits[len++] = '0';
}
//if (len > RAWBITFRAME_LEN+OVERLAP*BITS*2) len = RAWBITFRAME_LEN+OVERLAP*BITS*2;
//for (i = len; i < RAWBITFRAME_LEN+OVERLAP*BITS*2; i++) frame_rawbits[i] = 0; // oder: '0'
frame_rawbits[len] = '\0';
flen = len / (2*BITS);
if (option_ecc) {
viterbi(frm_rawbits);
rawbits = vit_rawbits;
}
else rawbits = frm_rawbits;
err = deconv(rawbits, frame_bits);
if (err) { for (i=err; i < BITFRAME_LEN+OVERLAP*BITS; i++) frame_bits[i] = 0; }
bits2bytes(frame_bits, frm_bytes);
if (option_raw == 2) {
for (i = 0; i < flen; i++) printf("%02x ", frm_bytes[i]); printf("\n");
}
for (i = 0; i < flen; i++) {
ecc_buf[bufidx] = frm_bytes[i];
bufidx = (bufidx+1) % ECCBUF_LEN;
}
k = 0;
pos = 0;
for (n = 0; n < flen-rs_R-5; n++) {
int bf = 0;
for (j = 0; j < 5; j++) bf += (frm_bytes[n+rs_R+j] == rs_sync[j]);
if (bf == 5) {
if (k < kMAX) {
rsbf[k].epos = rs_R + n;
rsbf[k].fpos = rs_R + pos;
k++;
}
n += rs_R+5;
}
frame_bytes[pos] = frm_bytes[n];
pos++;
}
while (n < flen) frame_bytes[pos++] = frm_bytes[n++];
if (option_ecc == 2) {
for (j = 0; j < pos; j++) f1.bytes[OFS+j] = frame_bytes[j];
for (i = 0; i < k; i++) {
for (j = 0; j < rs_N; j++) rs_cw[j] = ecc_buf[ (bufidx-1-flen+rsbf[i].epos-j +ECCBUF_LEN) % ECCBUF_LEN ];
errs = lms6_ecc(rs_cw);
for (j = rs_R; j < rs_N; j++) {
int idx = rsbf[i].fpos-j;
if (f1.pos-1 + idx < 0) f0.bytes[OFS+ f0.pos-1 + idx ] = rs_cw[j];
else f1.bytes[OFS+ f1.pos-1 + idx ] = rs_cw[j];
}
// delay 1 frame due to overlap
rsbf[i].errs = errs;
if (option_raw == 4) {
for (j = 0; j < rs_N; j++) printf("%02x", rs_cw[rs_N-1-j]);
printf(" (%d)\n", errs);
}
}
}
f1.pos = pos;
if (option_ecc == 2) {
p_frame = f0.bytes;
pos = f0.pos;
}
else {
p_frame = frame;
}
crc_err = check_CRC(p_frame);
print_frame(crc_err, len, pos);
f0 = f1;
f1.pos = 0;
}
int main(int argc, char **argv) {
FILE *fp;
char *fpname;
int i, bit, len, rbit, rbit0;
int pos;
int header_found = 0;
int next_header = 0;
fpname = argv[0];
++argv;
while ((*argv) && (!wavloaded)) {
if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) {
fprintf(stderr, "%s [options] audio.wav\n", fpname);
fprintf(stderr, " options:\n");
fprintf(stderr, " -v, --verbose\n");
fprintf(stderr, " -r, --raw\n");
return 0;
}
else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) {
option_verbose = 1;
}
//else if ( (strcmp(*argv, "-vv") == 0) ) option_verbose = 2;
else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) {
option_raw = 1; // bytes - rs_ecc_codewords
}
else if ( (strcmp(*argv, "-r0") == 0) || (strcmp(*argv, "--raw0") == 0) ) {
option_raw = 2; // bytes: info + codewords
}
else if ( (strcmp(*argv, "-rc") == 0) || (strcmp(*argv, "--rawecc") == 0) ) {
option_raw = 4; // rs_ecc_codewords
}
else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) {
option_raw = 8; // rawbits
}
else if (strcmp(*argv, "--ecc" ) == 0) { option_ecc = 1; } // viterbi
else if (strcmp(*argv, "--ecc2") == 0) { option_ecc = 2; } // RS-ECC (+viterbi)
else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) {
option_inv = 1; // unnoetig, NRZ-S...
}
else if (strcmp(*argv, "--res") == 0) { option_res = 1; }
else if (strcmp(*argv, "-b") == 0) { option_b = 1; }
else {
fp = fopen(*argv, "rb");
if (fp == NULL) {
fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv);
return -1;
}
wavloaded = 1;
}
++argv;
}
if (!wavloaded) fp = stdin;
i = read_wav_header(fp);
if (i) {
fclose(fp);
return -1;
}
if (option_raw == 4) option_ecc = 2;
if (option_ecc) {
vit_initCodes();
}
if (option_ecc == 2) {
rs_init_RS255ccsds(); // bch_ecc.c
}
pos = FRAMESTART;
rbit0 = 0; //idle
while (!read_bits_fsk(fp, &rbit, &len)) {
if (len == 0) { // reset_frame();
/*if (pos > 8*2*pos_GPSlon) {
//for (i = pos; i < RAWBITFRAME_LEN+OVERLAP*BITS*2; i++) frame_rawbits[i] = '0';
proc_frame(pos);
//header_found = 0;
pos = FRAMESTART;
}*/
//inc_bufpos();
//buf[bufpos] = 'x';
//fprintf(stderr, "len==0\n");
continue; // ...
}
for (i = 0; i < len; i++) {
inc_bufpos();
bit = 0x30 + (rbit==rbit0); // Ascii, NRZ-S
buf[bufpos] = bit;
rbit0 = rbit;
if (!header_found) {
header_found = compare2();
}
else {
if (pos < RAWBITFRAME_LEN+OVERLAP*BITS*2) {
frame_rawbits[pos] = bit;
pos++;
}
}
if (pos > FRM_MINLEN*(2*BITS)) {
next_header = compare2();
}
if (pos >= RAWBITFRAME_LEN+OVERLAP*BITS*2 || next_header) {
frame_rawbits[pos] = '\0';
proc_frame(pos);
pos = FRAMESTART;
header_found = next_header;
next_header = 0;
}
}
if (header_found && option_b) {
bitstart = 1;
while ( pos < FRM_MINLEN*(2*BITS) ) {
if (read_rawbit(fp, &rbit) == EOF) break;
bit = 0x30 + (rbit==rbit0); // Ascii, NRZ-S
rbit0 = rbit;
frame_rawbits[pos] = bit;
pos++;
}
}
}
printf("\n");
fclose(fp);
return 0;
}