#include #include #include #include #include typedef unsigned char ui8_t; typedef unsigned short ui16_t; typedef unsigned int ui32_t; typedef short i16_t; typedef int i32_t; static int option_verbose = 0, // ausfuehrliche Anzeige option_inv = 0, // invertiert Signal //option_dc = 0, option_silent = 0, option_cont = 0, wavloaded = 0; static int wav_channel = 0; // audio channel: left //int dfm_bps = 2500; static char dfm_header[] = "10011010100110010101101001010101"; // DFM-09 // "01100101011001101010010110101010"; // DFM-06 //int vai_bps = 4800; static char rs41_header[] = "00001000011011010101001110001000" "01000100011010010100100000011111"; static char rs92_header[] = //"10100110011001101001" //"10100110011001101001" "10100110011001101001" "10100110011001101001" "1010011001100110100110101010100110101001"; //int lms_bps = 4800; // lms6_403MHz static char lms6_header[] = "0101011000001000""0001110010010111" "0001101010100111""0011110100111110"; //int mk2a_bps = 9600; // lms6_1680MHz static char mk2a_header[] = "0010100111""0010100111""0001001001""0010010101"; //int m10_bps = 9600; static char m10_header[] = "10011001100110010100110010011001"; // frame byte[0..1]: byte[0]=framelen-1, byte[1]=type(8F=M2K2,9F=M10,AF=M10+) // M2K2 : 64 8F : 0110010010001111 // M10 : 64 9F : 0110010010011111 (framelen 0x64+1) // M10-aux: 76 9F : 0111011010011111 (framelen 0x76+1) // M10+ : 64 AF : 0110010010101111 (w/ gtop-GPS) // imet_9600 / 1200 Hz; static char imet_preamble[] = "11110000111100001111000011110000" "11110000111100001111000011110000" "11110000111100001111000011110000" "11110000111100001111000011110000"; // 1200 Hz preamble //int imet1ab_bps = 9600; // 1200 bits/sec static char imet1ab_header[] = "11110000111100001111000011110000" // "11110000""10101100110010101100101010101100" "11110000""10101100110010101100101010101100"; // 11110000:1 , 001100110:0 // 11/4=2.1818.. static char imet1rs_header[] = "0000""1111""0000""1111""0000""1111" // preamble "0000""1111"; // imet1rs/imet4 1200Hz preamble , lead_out , 8N1 byte: lead-in 8bits lead-out , ... // 1:1200Hz/0:2200Hz tones, bit-duration 1/1200 sec, phase ... // bits: 1111111111111111111 10 10000000 10 ..; // C34/C50: 2400 baud, 1:2900Hz/0:4800Hz static char c34_preheader[] = "01010101010101010101010101010101"; // 2900 Hz tone // dft, dB-max(1000Hz..5000Hz) = 2900Hz ? typedef struct { int bps; // header: here bps means baudrate ... int hLen; int L; char *header; float BT; float spb; float thres; int herrs; float complex *Fm; char *type; ui8_t tn; // signed? } rsheader_t; #define Nrs 10 #define idxAB 8 #define idxRS 9 static rsheader_t rs_hdr[Nrs] = { { 2500, 0, 0, dfm_header, 1.0, 0.0, 0.65, 2, NULL, "DFM9", 2}, // DFM6: -2 (unsigned) { 4800, 0, 0, rs41_header, 0.5, 0.0, 0.70, 2, NULL, "RS41", 3}, { 4800, 0, 0, rs92_header, 0.5, 0.0, 0.70, 3, NULL, "RS92", 4}, { 4800, 0, 0, lms6_header, 1.0, 0.0, 0.70, 2, NULL, "LMS6", 8}, { 9616, 0, 0, mk2a_header, 1.0, 0.0, 0.70, 2, NULL, "MK2LMS", 10}, // Mk2a/LMS6-1680 { 9616, 0, 0, m10_header, 1.0, 0.0, 0.76, 2, NULL, "M10", 5}, { 5800, 0, 0, c34_preheader, 1.5, 0.0, 0.80, 2, NULL, "C34C50", 9}, // C34/C50 2900 Hz tone { 9600, 0, 0, imet_preamble, 0.5, 0.0, 0.80, 4, NULL, "IMET", 6}, // IMET1AB=7, IMET1RS=8 { 9600, 0, 0, imet1ab_header, 1.0, 0.0, 0.80, 2, NULL, "IMET1AB", 6}, // (rs_hdr[idxAB]) { 9600, 0, 0, imet1rs_header, 0.5, 0.0, 0.80, 2, NULL, "IMET1RS", 7} // IMET4 (rs_hdr[idxRS]) }; /* // m10-false-positive: // m10-preamble similar to rs41-preamble, parts of rs92/imet1ab; diffs: // - iq: - modulation-index rs41 < rs92 < m10, // - power level / frame < 1s, noise // - fm: - frame duration <-> noise (variance/standard deviation) // - pulse-shaping // m10: 00110011 at 9600 bps // rs41: 0 1 0 1 at 4800 bps // - after header, m10-baudrate < rs41-baudrate // - m10 top-carrier, fm-mean/average // - m10-header ..110(1)0110011()011.. bit shuffle // - m10 frame byte[1]=type(M2K2,M10,M10+) */ /* // rs92 // imet1ab-false-positive // ... */ static int sample_rate = 0, bits_sample = 0, channels = 0; static int wav_ch = 0; // 0: links bzw. mono; 1: rechts static unsigned int sample_in, sample_out, delay; static int M; static float *bufs = NULL; static char *rawbits = NULL; static int Nvar = 0; // < M static double xsum = 0; static float *xs = NULL; /* static double xsum=0, qsum=0; static float *xs = NULL, *qs = NULL; */ static float dc_ofs = 0.0; static float dc = 0.0; /* ------------------------------------------------------------------------------------ */ static int LOG2N, N_DFT; static float complex *ew; static float complex *X, *Z, *cx; static float *xn; static float *db; static void dft_raw(float complex *Z) { int s, l, l2, i, j, k; float complex w1, w2, T; j = 1; for (i = 1; i < N_DFT; i++) { if (i < j) { T = Z[j-1]; Z[j-1] = Z[i-1]; Z[i-1] = T; } k = N_DFT/2; while (k < j) { j = j - k; k = k/2; } j = j + k; } for (s = 0; s < LOG2N; s++) { l2 = 1 << s; l = l2 << 1; w1 = (float complex)1.0; w2 = ew[s]; // cexp(-I*M_PI/(float)l2) for (j = 1; j <= l2; j++) { for (i = j; i <= N_DFT; i += l) { k = i + l2; T = Z[k-1] * w1; Z[k-1] = Z[i-1] - T; Z[i-1] = Z[i-1] + T; } w1 = w1 * w2; } } } static void dft(float *x, float complex *Z) { int i; for (i = 0; i < N_DFT; i++) Z[i] = (float complex)x[i]; dft_raw(Z); } static void Nidft(float complex *Z, float complex *z) { int i; for (i = 0; i < N_DFT; i++) z[i] = conj(Z[i]); dft_raw(z); // idft(): // for (i = 0; i < N_DFT; i++) z[i] = conj(z[i])/(float)N_DFT; // hier: z reell } static float freq2bin(int f) { return f * N_DFT / (float)sample_rate; } static float bin2freq(int k) { return sample_rate * k / (float)N_DFT; } /* ------------------------------------------------------------------------------------ */ /* static float get_bufvar(int ofs) { float mu = xs[(sample_out+M + ofs) % M]/Nvar; float var = qs[(sample_out+M + ofs) % M]/Nvar - mu*mu; return var; } */ static float get_bufmu(int ofs) { float mu = xs[(sample_out+M + ofs) % M]/Nvar; return mu; } static int getCorrDFT(int K, unsigned int pos, float *maxv, unsigned int *maxvpos, rsheader_t *rshd) { int i; int mp = -1; float mx = 0.0; float mx2 = 0.0; float re_cx = 0.0; double xnorm = 1; unsigned int mpos = 0; dc = 0.0; if (K + rshd->L > N_DFT) return -1; // if (sample_out < rshd->L) return -2; // nur falls K-4 < L if (pos == 0) pos = sample_out; for (i = 0; i < K+rshd->L; i++) xn[i] = bufs[(pos+M -(K+rshd->L-1) + i) % M]; while (i < N_DFT) xn[i++] = 0.0; dft(xn, X); dc = get_bufmu(pos-sample_out); //oder: dc = creal(X[0])/(K+rshd->L) = avg(xn) // zu lang (M10) for (i = 0; i < N_DFT; i++) Z[i] = X[i]*rshd->Fm[i]; Nidft(Z, cx); // relativ Peak - Normierung erst zum Schluss; // dann jedoch nicht zwingend corr-Max wenn FM-Amplitude bzw. norm(x) nicht konstant // (z.B. rs41 Signal-Pausen). Moeglicherweise wird dann wahres corr-Max in dem // K-Fenster nicht erkannt, deshalb K nicht zu gross waehlen. // mx2 = 0.0; // t = L-1 for (i = rshd->L-1; i < K+rshd->L; i++) { // i=t .. i=t+K < t+1+K re_cx = creal(cx[i]); // imag(cx)=0 //if (fabs(re_cx) > fabs(mx)) { if (re_cx*re_cx > mx2) { mx = re_cx; mx2 = mx*mx; mp = i; } } if (mp == rshd->L-1 || mp == K+rshd->L-1) return -4; // Randwert // mp == t mp == K+t mpos = pos - (K + rshd->L-1) + mp; // t = L-1 //xnorm = sqrt(qs[(mpos + 2*M) % M]); xnorm = 0.0; //xn[mp-t + i] for (i = 0; i < rshd->L; i++) xnorm += bufs[(mpos-i + M) % M]*bufs[(mpos-i + M) % M]; xnorm = sqrt(xnorm); mx /= xnorm*N_DFT; *maxv = mx; *maxvpos = mpos; return mp; } /* ------------------------------------------------------------------------------------ */ static int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } static int read_wav_header(FILE *fp, int wav_channel) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if (wav_channel >= 0 && wav_channel < channels) wav_ch = wav_channel; else wav_ch = 0; fprintf(stderr, "channel-In : %d\n", wav_ch+1); if ((bits_sample != 8) && (bits_sample != 16)) return -1; return 0; } static int f32read_sample(FILE *fp, float *s) { int i; short b = 0; for (i = 0; i < channels; i++) { if (fread( &b, bits_sample/8, 1, fp) != 1) return EOF; if (i == wav_ch) { // i = 0: links bzw. mono //if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128 //if (bits_sample == 16) sint = (short)b; if (bits_sample == 8) { b -= 128; } *s = b/128.0; if (bits_sample == 16) { *s /= 256.0; } } } return 0; } static int f32buf_sample(FILE *fp, int inv) { float s = 0.0; float xneu, xalt; if (f32read_sample(fp, &s) == EOF) return EOF; if (inv) s = -s; bufs[sample_in % M] = s - dc_ofs; xneu = bufs[(sample_in ) % M]; xalt = bufs[(sample_in+M - Nvar) % M]; xsum += xneu - xalt; // + xneu - xalt xs[sample_in % M] = xsum; /* qsum += (xneu - xalt)*(xneu + xalt); // + xneu*xneu - xalt*xalt qs[sample_in % M] = qsum; */ sample_out = sample_in - delay; sample_in += 1; return 0; } static int read_bufbit(int symlen, char *bits, unsigned int mvp, int reset, float dc, float spb) { // symlen==2: manchester2 0->10,1->01->1: 2.bit static unsigned int rcount; static float rbitgrenze; double sum = 0.0; if (reset) { rcount = 0; rbitgrenze = 0; } // bei symlen=2 (Manchester) kein dc noetig, // allerdings M10-header mit symlen=1 rbitgrenze += spb; do { sum += bufs[(rcount + mvp + M) % M] - dc; rcount++; } while (rcount < rbitgrenze); // n < spb if (symlen == 2) { rbitgrenze += spb; do { sum -= bufs[(rcount + mvp + M) % M] - dc; rcount++; } while (rcount < rbitgrenze); // n < spb } if (symlen != 2) { if (sum >= 0) *bits = '1'; else *bits = '0'; } else { if (sum >= 0) strncpy(bits, "10", 2); else strncpy(bits, "01", 2); } return 0; } static int headcmp(int symlen, unsigned int mvp, int inv, rsheader_t *rshd) { int errs = 0; int pos; int step = 1; char sign = 0; int len = 0; float dc = 0.0; /* if (option_dc) { len = rshd->L; for (pos = 0; pos < len; pos++) { dc += bufs[(mvp - 1 - pos + M) % M]; } dc /= (float)len; } */ if (symlen != 1) step = 2; if (inv) sign=1; len = rshd->hLen; for (pos = 0; pos < len; pos += step) { read_bufbit(symlen, rawbits+pos, mvp+1-(int)(rshd->hLen*rshd->spb), pos==0, dc, rshd->spb); } rawbits[pos] = '\0'; while (len > 0) { if ((rawbits[len-1]^sign) != rshd->header[len-1]) errs += 1; len--; } return errs; } /* -------------------------------------------------------------------------- */ #define SQRT2 1.4142135624 // sqrt(2) // sigma = sqrt(log(2)) / (2*PI*BT): //#define SIGMA 0.2650103635 // BT=0.5: 0.2650103635 , BT=0.3: 0.4416839392 // Gaussian FM-pulse static double Q(double x) { return 0.5 - 0.5*erf(x/SQRT2); } static double pulse(double t, double sigma) { return Q((t-0.5)/sigma) - Q((t+0.5)/sigma); } static double norm2_match(float *match, int n) { int i; double x, y = 0.0; for (i = 0; i < n; i++) { x = match[i]; y += x*x; } return y; } static int init_buffers() { int i, j, pos; double t; double b0, b1, b2, b; float normMatch; int p2 = 1; int K, L; int n, k; float *match = NULL; float *m = NULL; double BT = 0.5; double sigma = sqrt(log(2)) / (2*M_PI*BT); char *bits = NULL; float spb = 0.0; int hLen = 0; int Lmax = 0; for (j = 0; j < Nrs; j++) { rs_hdr[j].spb = sample_rate/(float)rs_hdr[j].bps; rs_hdr[j].hLen = strlen(rs_hdr[j].header); rs_hdr[j].L = rs_hdr[j].hLen * rs_hdr[j].spb + 0.5; if (rs_hdr[j].hLen > hLen) hLen = rs_hdr[j].hLen; if (rs_hdr[j].L > Lmax) Lmax = rs_hdr[j].L; } // L = hLen * sample_rate/2500.0 + 0.5; // max(hLen*spb) L = 2*Lmax; M = 3*L; //if (samples_per_bit < 6) M = 6*N; sample_in = 0; p2 = 1; while (p2 < M) p2 <<= 1; while (p2 < 0x2000) p2 <<= 1; // or 0x4000, if sample not too short N_DFT = p2; K = N_DFT - L; LOG2N = log(N_DFT)/log(2)+0.1; // 32bit cpu ... intermediate floating-point precision //while ((1 << LOG2N) < N_DFT) LOG2N++; // better N_DFT = (1 << LOG2N) ... delay = L/16; M = N_DFT + delay + 8; // L+K < M Nvar = Lmax; // wenn Nvar fuer xnorm, dann Nvar=rshd.L rawbits = (char *)calloc( hLen+1, sizeof(char)); if (rawbits == NULL) return -100; bufs = (float *)calloc( M+1, sizeof(float)); if (bufs == NULL) return -100; xs = (float *)calloc( M+1, sizeof(float)); if (xs == NULL) return -100; /* qs = (float *)calloc( M+1, sizeof(float)); if (qs == NULL) return -100; */ xn = calloc(N_DFT+1, sizeof(float)); if (xn == NULL) return -1; db = calloc(N_DFT+1, sizeof(float)); if (db == NULL) return -1; ew = calloc(LOG2N+1, sizeof(complex float)); if (ew == NULL) return -1; X = calloc(N_DFT+1, sizeof(complex float)); if (X == NULL) return -1; Z = calloc(N_DFT+1, sizeof(complex float)); if (Z == NULL) return -1; cx = calloc(N_DFT+1, sizeof(complex float)); if (cx == NULL) return -1; for (n = 0; n < LOG2N; n++) { k = 1 << n; ew[n] = cexp(-I*M_PI/(float)k); } match = (float *)calloc( L+1, sizeof(float)); if (match == NULL) return -1; m = (float *)calloc(N_DFT+1, sizeof(float)); if (m == NULL) return -1; for (j = 0; j < Nrs-1; j++) { rs_hdr[j].Fm = (float complex *)calloc(N_DFT+1, sizeof(complex float)); if (rs_hdr[j].Fm == NULL) return -1; bits = rs_hdr[j].header; spb = rs_hdr[j].spb; sigma = sqrt(log(2)) / (2*M_PI*rs_hdr[j].BT); for (i = 0; i < rs_hdr[j].L; i++) { pos = i/spb; t = (i - pos*spb)/spb - 0.5; b1 = ((bits[pos] & 0x1) - 0.5)*2.0; b = b1*pulse(t, sigma); if (pos > 0) { b0 = ((bits[pos-1] & 0x1) - 0.5)*2.0; b += b0*pulse(t+1, sigma); } if (pos < hLen-1) { b2 = ((bits[pos+1] & 0x1) - 0.5)*2.0; b += b2*pulse(t-1, sigma); } match[i] = b; } normMatch = sqrt(norm2_match(match, rs_hdr[j].L)); for (i = 0; i < rs_hdr[j].L; i++) { match[i] /= normMatch; } for (i = 0; i < rs_hdr[j].L; i++) m[rs_hdr[j].L-1 - i] = match[i]; // t = L-1 while (i < N_DFT) m[i++] = 0.0; dft(m, rs_hdr[j].Fm); } free(match); match = NULL; free(m); m = NULL; return K; } static int free_buffers() { int j; if (bufs) { free(bufs); bufs = NULL; } if (xs) { free(xs); xs = NULL; } /* if (qs) { free(qs); qs = NULL; } */ if (rawbits) { free(rawbits); rawbits = NULL; } if (xn) { free(xn); xn = NULL; } if (db) { free(xn); xn = NULL; } if (ew) { free(ew); ew = NULL; } if (X) { free(X); X = NULL; } if (Z) { free(Z); Z = NULL; } if (cx) { free(cx); cx = NULL; } for (j = 0; j < Nrs-1; j++) { if (rs_hdr[j].Fm) { free(rs_hdr[j].Fm); rs_hdr[j].Fm = NULL; } } return 0; } /* ------------------------------------------------------------------------------------ */ int main(int argc, char **argv) { FILE *fp = NULL; char *fpname = NULL; int j; int k, K; float mv[Nrs]; unsigned int mv_pos[Nrs], mv0_pos[Nrs]; int mp[Nrs]; int header_found = 0; int herrs; float thres = 0.76; float tl = -1.0; int j_max; float mv_max; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); //fprintf(stderr, " -v, --verbose\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } //else if ( (strcmp(*argv, "--dc") == 0) ) { option_dc = 1; } else if ( (strcmp(*argv, "-s") == 0) || (strcmp(*argv, "--silent") == 0) ) { option_silent = 1; } else if ( (strcmp(*argv, "-c") == 0) || (strcmp(*argv, "--cnt") == 0) ) { option_cont = 1; } else if ( (strcmp(*argv, "-t") == 0) || (strcmp(*argv, "--time") == 0) ) { ++argv; if (*argv) tl = atof(*argv); else return -50; } else if ( (strcmp(*argv, "--ch2") == 0) ) { wav_channel = 1; } // right channel (default: 0=left) else if ( (strcmp(*argv, "--ths") == 0) ) { ++argv; if (*argv) { thres = atof(*argv); for (j = 0; j < Nrs; j++) rs_hdr[j].thres = thres; } else return -50; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "%s konnte nicht geoeffnet werden\n", *argv); return -50; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; j = read_wav_header(fp, wav_channel); if ( j < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -50; } K = init_buffers(); if ( K < 0 ) { fprintf(stderr, "error: init buffers\n"); return -50; }; for (j = 0; j < Nrs; j++) { mv[j] = 0; mv_pos[j] = 0; mp[j] = 0; } j_max = 0; mv_max = 0.0; k = 0; while ( f32buf_sample(fp, option_inv) != EOF ) { if (tl > 0 && sample_in > (tl+1)*sample_rate) break; // (int)sample_out < 0 k += 1; if (k >= K-4) { for (j = 0; j < Nrs-2; j++) { #ifdef NOC34C50 if ( strncmp(rs_hdr[j].type, "C34C50", 6) == 0 ) continue; #endif mv0_pos[j] = mv_pos[j]; mp[j] = getCorrDFT(K, 0, mv+j, mv_pos+j, rs_hdr+j); } k = 0; } else { //for (j = 0; j < Nrs; j++) mv[j] = 0.0; continue; } header_found = 0; for (j = 0; j < Nrs-2; j++) { if (mp[j] > 0 && (mv[j] > rs_hdr[j].thres || mv[j] < -rs_hdr[j].thres)) { if (mv_pos[j] > mv0_pos[j]) { herrs = headcmp(1, mv_pos[j], mv[j]<0, rs_hdr+j); if (herrs < rs_hdr[j].herrs) { // max bit-errors in header if ( strncmp(rs_hdr[j].type, "IMET", 4) == 0 ) { int n, m; int D = N_DFT/2 - 3; float df; float pow2200, pow2400; int bin2200, bin2400; for (n = 0; n < N_DFT; n++) { xn[n] = 0.0; db[n] = 0.0; } n = 0; while (n < sample_rate) { // 1 sec if (f32buf_sample(fp, option_inv) == EOF) break;//goto ende; xn[n % D] = bufs[sample_out % M]; n++; if (n % D == 0) { dft(xn, X); for (m = 0; m < N_DFT; m++) db[m] += cabs(X[m]); } } df = bin2freq(1); m = 50.0/df; if (m < 1) m = 1; if (freq2bin(2500) > N_DFT/2) goto ende; bin2200 = freq2bin(2200); pow2200 = 0.0; for (n = 0; n < m; n++) pow2200 += db[ bin2200 - m/4 + n ]; bin2400 = freq2bin(2400); pow2400 = 0.0; for (n = 0; n < m; n++) pow2400 += db[ bin2400 - m/4 + n ]; mv[j] = fabs(mv[j]); if (pow2200 > pow2400) { // IMET1RS mv[idxRS] = mv[j]; mv[j] = 0; // IMET1 -> IMET1RS mv_pos[idxRS] = mv_pos[j]; j = idxRS; header_found = 1; } else { // IMET1AB mv[j] = 0; j = idxAB; mv_pos[j] = sample_out; n = 0; // detect header/polarity k = 0; while ( n < 4*sample_rate && f32buf_sample(fp, option_inv) != EOF ) { n += 1; k += 1; if (k >= K-4) { mv0_pos[j] = mv_pos[j]; mp[j] = getCorrDFT(K, 0, mv+j, mv_pos+j, rs_hdr+j); k = 0; } else { //mv[j] = 0.0; continue; } if (mp[j] > 0 && (mv[j] > rs_hdr[j].thres || mv[j] < -rs_hdr[j].thres)) { header_found = 1; if (mv[j] < 0) header_found = -1; break; } mv[j] = 0.0; } } } else { header_found = 1; } if (header_found) { if (!option_silent) { if (option_verbose) fprintf(stdout, "sample: %d\n", mv_pos[j]); fprintf(stdout, "%s: %.4f\n", rs_hdr[j].type, mv[j]); } // if ((j < 3) && mv[j] < 0) header_found = -1; if ( fabs(mv_max) < fabs(mv[j]) ) { // j-weights? mv_max = mv[j]; j_max = j; } } } } } } if (header_found && !option_cont) break; header_found = 0; for (j = 0; j < Nrs; j++) mv[j] = 0.0; } ende: free_buffers(); fclose(fp); // return only best result // latest: j if (mv_max) { if (mv_max < 0 && j_max < 3) header_found = -1; else header_found = 1; } else header_found = 0; return (header_found * rs_hdr[j_max].tn); }