Hamming Code.

$\operatorname{Hamming}(n, k)$ with block length $n=2^{m}-1$ and messages length $k=n-m$ is a linear code that maps

$$
G: \mathbb{F}_{2}^{k} \mapsto \mathbb{F}_{2}^{n}
$$

i.e. messages of length k are mapped to codewords of length n. G is injective, so $C=G\left(\mathbb{F}_{2}^{k}\right)$ is a k-dim. subspace in \mathbb{F}_{2}^{n}. Usually a systematic code is used where a codeword consists of k message bits together with $m=n-k$ additional parity bits.
It can correct 1 error or detect up to 2 errors. The minimum distance between codewords is 3 , and for each word $w \in \mathbb{F}_{2}^{n}$ there is a codeword $c \in C=G\left(\mathbb{F}_{2}^{k}\right)$ with distance $d_{h}(w, c) \leq 1$ (d_{h} being the Hamming-distance).
G is the generator matrix, and there is a parity check matrix $H: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{m}$ such that $H c=0 \Longleftrightarrow c \in C$. If $w \in \mathbb{F}_{2}^{n}$, the vector $H w$ is called the syndrome.
Let c be the transmitted codeword and $w=c+e$ the received word. If there is no error, then $e=0$. If there is 1 error, i.e. the vector e has only one non-zero entry, then e is equal to the canonical unit vector u_{j} and $H w=H c+H e=H e=H u_{j}$ is equal to the j-th column of the matrix H. If there are more than 1 errors, then w is either another (valid) codeword and $H w=0$, or it has distance 1 to another codeword and $H w$ is also reproduced by a different unit error vector, and the decoder will make an error.
So if the received codeword has 2 errors, it will be decoded to the wrong codeword. A parity bit can be added such that the extended Hamming code can correct 1 error and detect 2 errors, or it can detect up to 3 errors. The distance between codewords is at least 4, so we always have $d_{h}(w, c) \leq 2$ for some $c \in C$, and if $d_{h}(w, c) \leq 1, w$ can be corrected. If $d_{h}(w, c)=2$, a soft decision can be made, if there is additional score/confidence data for the received bits. Then the codeword $c \in C$ with $d_{h}(c, w)=2$ can be found which matches best with respect to a metric.

Example: extended Hamming Code $(8,4)$

$$
G=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right) \quad, \quad H=\left(\begin{array}{llllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

$C=G\left(\mathbb{F}_{2}^{4}\right)$ has 16 codewords. Further there are $16 \cdot 8=128$ elements in \mathbb{F}_{2}^{8} with Hamming-distance $d_{h}=1$ to C (i.e. 1-error-words) and $7 \cdot 16=112$ elements with $d_{h}=2$ (i.e. 2 -error-words). If w is a word having 2 errors, then there are 4 codewords c with $d_{h}(c, w)=2$.

Soft decision.

For each received bit the demodulator produces a score $s_{j} \in \mathbb{R}$ and makes a hard decision $h_{j} \in\{-1,+1\}$ (or bit-decision $\hat{h}_{j} \in\{0,1\}=\mathbb{F}_{2}$):

$$
\begin{array}{llll}
s_{j}>0 & \leadsto & \hat{h}_{j}=1 \quad, \quad h_{j}=2 \hat{h}_{j}-1=+1 \\
s_{j}<0 & \leadsto & \hat{h}_{j}=0 \quad, \quad h_{j}=2 \hat{h}_{j}-1=-1
\end{array}
$$

Instead of using the algebraic properties of the linear code and the Hammingdistance to decoded the received bit-word $\hat{h}=\left(\hat{h}_{1}, \ldots, \hat{h}_{n}\right)$, one can also use the soft bit-scores of a demodulator and a different distance function to find the best matching codeword by considering the codewords in $\{-1,+1\}^{n} \subset \mathbb{R}^{n}$ and the scores of the received word in \mathbb{R}^{n}.
Let $s=\left(s_{1}, \ldots, s_{n}\right)$ be the received soft word and $h=\left(h_{1}, \ldots, h_{n}\right) \in\{-1,+1\}^{n}$ with $s_{j}=h_{j}\left|s_{j}\right|$ the corresponding hard word:

$$
\begin{gathered}
h_{j}=\frac{s_{j}}{\left|s_{j}\right|}=\operatorname{sgn} s_{j} \quad\left(s_{j} \neq 0\right) \\
\left|h_{j}\right|=1=h_{j} h_{j} \quad, \quad s_{j}=h_{j}\left|s_{j}\right| \quad \leadsto \quad\left|s_{j}\right|=h_{j} s_{j}
\end{gathered}
$$

If $y=\left(y_{1}, \ldots, y_{n}\right) \in\{-1,+1\}^{n}$ is another hard word, then $\operatorname{corr}(s, y) \leq \operatorname{corr}(s, h)$, where

$$
\operatorname{corr}(s, h)=\sum_{j} s_{j} h_{j}=\sum_{j}\left|s_{j}\right|=\|s\|_{1} \geq 0 .
$$

The best valid match $y \in\{-1,+1\}^{n}$ maximizes $\operatorname{corr}(s, y)$. Using $y_{j}= \pm h_{j}$, we have

$$
\operatorname{corr}(s, h)-\operatorname{corr}(s, y)=\sum_{j} s_{j}\left(h_{j}-y_{j}\right)=\sum_{h_{j} \neq y_{j}} s_{j}\left(h_{j}-y_{j}\right)=2 \sum_{h_{j} \neq y_{j}}\left|s_{j}\right| \geq 0 .
$$

Thus the best match y is for which the sum of $\left|s_{j}\right|$ is minimal for $y_{j} \neq h_{j}$, i.e. the errors are probably at positions with lower scores:

$$
\operatorname{corr}(s, y)=\max _{\hat{x} \in C}\{\operatorname{corr}(s, x)\} \leq \operatorname{corr}(s, h) .
$$

It is also possible to use the Euclidean distance d_{2} or Manhattan distance d_{1}, though for d_{1} the scores s_{j} need to be normalized.
For $h, y \in\{-1,+1\}^{n}$ and $s_{j}=h_{j}\left|s_{j}\right|$ we have

$$
\begin{aligned}
d_{p}(s, h)^{p} & =\sum_{j}\left|s_{j}-h_{j}\right|^{p}=\sum_{j}| | s_{j}\left|h_{j}-h_{j}\right|^{p}=\sum_{j}| | s_{j}|-1|^{p}, \\
d_{p}(s, y)^{p} & =\sum_{j}\left|s_{j}-y_{j}\right|^{p}=\sum_{j}| | s_{j}\left|h_{j}-y_{j}\right|^{p} \\
& =\sum_{h_{j}=y_{j}}| | s_{j}\left|h_{j}-h_{j}\right|^{p}+\sum_{h_{j} \neq y_{j}}| | s_{j}\left|h_{j}+h_{j}\right|^{p} \\
& =\sum_{h_{j}=y_{j}}| | s_{j}|-1|^{p}+\sum_{h_{j} \neq y_{j}}| | s_{j}|+1|^{p} \\
& \geq d_{p}(s, h)^{p} .
\end{aligned}
$$

Since

$$
d_{1}(s, y)-d_{1}(s, h)=\sum_{h_{j} \neq y_{j}}\left(\left|1+\left|s_{j}\right|\right|-\left|1-\left|s_{j}\right|\right|\right) \geq 0
$$

a soft decision for d_{1} is only possible for $s_{j} \in[-1,+1]$, i.e. if the bit-scores are normalized. Then choose valid $\hat{y} \in C$ such that $d_{1}(s, y)$ is minimal,

$$
d_{1}(s, y)=\min _{\hat{x} \in C}\left\{d_{1}(s, x)\right\} .
$$

For d_{2} we get

$$
\begin{aligned}
d_{2}(s, y)^{2}-d_{2}(s, h)^{2} & =\sum_{h_{j} \neq y_{j}}\left(\left(1+\left|s_{j}\right|\right)^{2}-\left(1-\left|s_{j}\right|\right)^{2}\right) \\
& =\sum_{h_{j} \neq y_{j}}\left(2\left|s_{j}\right|+2\left|s_{j}\right|\right)=4 \sum_{h_{j} \neq y_{j}}\left|s_{j}\right| \geq 0,
\end{aligned}
$$

which leads to the same soft decision as $\operatorname{corr}(s, h)-\operatorname{corr}(s, y)$ for $s \in \mathbb{R}^{n}$,

$$
d_{2}(s, y)^{2}-d_{2}(s, h)^{2}=2(\operatorname{corr}(s, h)-\operatorname{corr}(s, y)) .
$$

Choose valid $\hat{y} \in C$ such that $d_{2}(s, y)$ is minimal,

$$
d_{2}(s, y)=\min _{\hat{x} \in C}\left\{d_{2}(s, x)\right\} .
$$

If soft decision is frequently used for 2-error words, then it is likely that 3 errors occur that will be decoded to the wrong codeword. Thus for higher error rates, e.g. an additional CRC over several codewords can give a second opinion.

Remark:

For bits $\hat{b} \in\{0,1\}$, soft bits are often defined such that

$$
\begin{array}{lll}
\hat{b}=0 & \leadsto & \tilde{b}=+1 \\
\hat{b}=1 & \leadsto & \tilde{b}=-1
\end{array}
$$

i.e. $\tilde{b}=1-2 \hat{b}($ in $\mathbb{R})$. This way addition $(\bmod 2)$ in $\{0,1\}$ corresponds to the multiplication in $\{+1,-1\} \subset \mathbb{R}$, with +1 being the identity element.

