
Hamming Code.

Hamming(n, k) with block length n = 2m−1 and messages length k = n −m is a
linear code that maps

G : Fk
2 7→ Fn

2 ,

i.e. messages of length k are mapped to codewords of length n. G is injective, so
C = G(Fk

2) is a k–dim. subspace in Fn
2 . Usually a systematic code is used where a

codeword consists of k message bits together with m = n− k additional parity bits.

It can correct 1 error or detect up to 2 errors. The minimum distance between
codewords is 3, and for each word w ∈ Fn

2 there is a codeword c ∈ C = G(Fk
2) with

distance dh(w, c) ≤ 1 (dh being the Hamming–distance).

G is the generator matrix, and there is a parity check matrix H : Fn
2 7→ Fm

2 such
that Hc = 0 ⇐⇒ c ∈ C . If w ∈ Fn

2 , the vector Hw is called the syndrome.

Let c be the transmitted codeword and w = c + e the received word. If there is no
error, then e = 0. If there is 1 error, i.e. the vector e has only one non-zero entry,
then e is equal to the canonical unit vector uj and Hw = Hc + He = He = Huj

is equal to the j-th column of the matrix H. If there are more than 1 errors, then
w is either another (valid) codeword and Hw = 0, or it has distance 1 to another
codeword and Hw is also reproduced by a different unit error vector, and the decoder
will make an error.

So if the received codeword has 2 errors, it will be decoded to the wrong codeword.
A parity bit can be added such that the extended Hamming code can correct 1
error and detect 2 errors, or it can detect up to 3 errors. The distance between
codewords is at least 4, so we always have dh(w, c) ≤ 2 for some c ∈ C, and if
dh(w, c) ≤ 1, w can be corrected. If dh(w, c) = 2, a soft decision can be made, if
there is additional score/confidence data for the received bits. Then the codeword
c ∈ C with dh(c, w) = 2 can be found which matches best with respect to a metric.

Example: extended Hamming Code (8,4)

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


, H =


0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1



C = G(F4
2) has 16 codewords. Further there are 16 · 8 = 128 elements in F8

2 with
Hamming–distance dh = 1 to C (i.e. 1-error-words) and 7 · 16 = 112 elements
with dh = 2 (i.e. 2-error-words). If w is a word having 2 errors, then there are 4
codewords c with dh(c, w) = 2.
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Soft decision.

For each received bit the demodulator produces a score sj ∈ R and makes a hard

decision hj ∈ {−1,+1} (or bit-decision ĥj ∈ {0, 1} = F2 ):

sj > 0 ; ĥj = 1 , hj = 2ĥj − 1 = +1

sj < 0 ; ĥj = 0 , hj = 2ĥj − 1 = −1

Instead of using the algebraic properties of the linear code and the Hamming–
distance to decoded the received bit-word ĥ = (ĥ1, . . . , ĥn) , one can also use the
soft bit-scores of a demodulator and a different distance function to find the best
matching codeword by considering the codewords in {−1,+1}n ⊂ Rn and the scores
of the received word in Rn.
Let s = (s1, . . . , sn) be the received soft word and h = (h1, . . . , hn) ∈ {−1,+1}n
with sj = hj|sj| the corresponding hard word:

hj =
sj
|sj|

= sgn sj (sj 6= 0)

|hj| = 1 = hjhj , sj = hj|sj| ; |sj| = hjsj

If y = (y1, . . . , yn) ∈ {−1,+1}n is another hard word, then corr(s, y) ≤ corr(s, h) ,
where

corr(s, h) =
∑
j

sjhj =
∑
j

|sj| = ‖s‖1 ≥ 0 .

The best valid match y ∈ {−1,+1}n maximizes corr(s, y). Using yj = ±hj, we have

corr(s, h)− corr(s, y) =
∑
j

sj(hj − yj) =
∑
hj 6=yj

sj(hj − yj) = 2
∑
hj 6=yj

|sj| ≥ 0 .

Thus the best match y is for which the sum of |sj| is minimal for yj 6= hj, i.e. the
errors are probably at positions with lower scores:

corr(s, y) = max
x̂∈C
{corr(s, x)} ≤ corr(s, h) .

It is also possible to use the Euclidean distance d2 or Manhattan distance d1, though
for d1 the scores sj need to be normalized.
For h, y ∈ {−1,+1}n and sj = hj|sj| we have

dp(s, h)p =
∑
j

|sj − hj|p =
∑
j

∣∣|sj|hj − hj

∣∣p =
∑
j

∣∣|sj| − 1
∣∣p ,

dp(s, y)p =
∑
j

|sj − yj|p =
∑
j

∣∣|sj|hj − yj
∣∣p

=
∑
hj=yj

∣∣|sj|hj − hj

∣∣p +
∑
hj 6=yj

∣∣|sj|hj + hj

∣∣p
=
∑
hj=yj

∣∣|sj| − 1
∣∣p +

∑
hj 6=yj

∣∣|sj|+ 1
∣∣p

≥ dp(s, h)p .
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Since
d1(s, y)− d1(s, h) =

∑
hj 6=yj

(∣∣1 + |sj|
∣∣− ∣∣1− |sj|∣∣) ≥ 0 ,

a soft decision for d1 is only possible for sj ∈ [−1,+1], i.e. if the bit-scores are
normalized. Then choose valid ŷ ∈ C such that d1(s, y) is minimal,

d1(s, y) = min
x̂∈C
{d1(s, x)} .

For d2 we get

d2(s, y)2 − d2(s, h)2 =
∑
hj 6=yj

(
(1 + |sj|)2 − (1− |sj|)2

)
=
∑
hj 6=yj

(
2|sj|+ 2|sj|

)
= 4

∑
hj 6=yj

|sj| ≥ 0 ,

which leads to the same soft decision as corr(s, h)− corr(s, y) for s ∈ Rn,

d2(s, y)2 − d2(s, h)2 = 2
(

corr(s, h)− corr(s, y)
)
.

Choose valid ŷ ∈ C such that d2(s, y) is minimal,

d2(s, y) = min
x̂∈C
{d2(s, x)} .

If soft decision is frequently used for 2-error words, then it is likely that 3 errors
occur that will be decoded to the wrong codeword. Thus for higher error rates, e.g.
an additional CRC over several codewords can give a second opinion.

Remark:
For bits b̂ ∈ {0, 1}, soft bits are often defined such that

b̂ = 0 ; b̃ = +1

b̂ = 1 ; b̃ = −1

i.e. b̃ = 1 − 2b̂ (in R). This way addition (mod 2) in {0, 1} corresponds to the
multiplication in {+1,−1} ⊂ R, with +1 being the identity element.
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