/* * dfm09 (dfm06) * sync header: correlation/matched filter * files: dfm09mod.c demod_mod.h demod_mod.c * compile: * gcc -c demod_mod.c * gcc dfm09mod.c demod_mod.o -lm -o dfm09mod * * author: zilog80 */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif #include "demod_mod.h" typedef struct { i8_t vbs; // verbose output i8_t raw; // raw frames i8_t crc; // CRC check output i8_t ecc; // Reed-Solomon ECC i8_t sat; // GPS sat data i8_t ptu; // PTU: temperature i8_t inv; i8_t aut; i8_t jsn; // JSON output (auto_rx) i8_t dst; // continuous pcks 0..8 i8_t dbg; } option_t; typedef struct { int ec; float ts; } pcksts_t; typedef struct { ui8_t max_ch; ui8_t nul_ch; ui8_t sn_ch; ui8_t chXbit; ui32_t SN_X; ui32_t chX[2]; } sn_t; typedef struct { ui32_t prn; // SVs used (PRN) float dMSL; // Alt_MSL - Alt_ellipsoid = -N = - geoid_height = ellipsoid - geoid ui8_t nSV; // numSVs used } gpsdat_t; #define BITFRAME_LEN 280 typedef struct { int frnr; int sonde_typ; ui32_t SN6; ui32_t SN; int week; int gpssec; int jahr; int monat; int tag; int std; int min; float sek; double lat; double lon; double alt; double dir; double horiV; double vertV; float meas24[5+2]; float status[2]; float _frmcnt; char sonde_id[16]; // "ID__:xxxxxxxx\0\0" hsbit_t frame[BITFRAME_LEN+4]; // char frame_bits[BITFRAME_LEN+4]; char dat_str[9][13+1]; sn_t snc; pcksts_t pck[9]; option_t option; int ptu_out; gpsdat_t gps; } gpx_t; //#define HEADLEN 32 // DFM09: Manchester2: 01->1,10->0 static char dfm_rawheader[] = "10011010100110010101101001010101"; //->"0100010111001111"; // 0x45CF (big endian) static char dfm_header[] = "0100010111001111"; /* ------------------------------------------------------------------------------------ */ #define BAUD_RATE 2500 /* ------------------------------------------------------------------------------------ */ #define B 8 // codeword: 8 bit #define S 4 // davon 4 bit data #define HEAD 0 // 16 bit #define CONF (16+0) // 56 bit #define DAT1 (16+56) // 104 bit #define DAT2 (16+160) // 104 bit // frame: 280 bit static ui8_t G[8][4] = // Generator {{ 1, 0, 0, 0}, { 0, 1, 0, 0}, { 0, 0, 1, 0}, { 0, 0, 0, 1}, { 0, 1, 1, 1}, { 1, 0, 1, 1}, { 1, 1, 0, 1}, { 1, 1, 1, 0}}; static ui8_t H[4][8] = // Parity-Check {{ 0, 1, 1, 1, 1, 0, 0, 0}, { 1, 0, 1, 1, 0, 1, 0, 0}, { 1, 1, 0, 1, 0, 0, 1, 0}, { 1, 1, 1, 0, 0, 0, 0, 1}}; static ui8_t He[8] = { 0x7, 0xB, 0xD, 0xE, 0x8, 0x4, 0x2, 0x1}; // Spalten von H: // 1-bit-error-Syndrome static ui8_t codewords[16][8]; // (valid) Hamming codewords static int nib4bits(ui8_t nib, ui8_t *bits) { // big endian int j; nib &= 0xF; for (j = 0; j < 4; j++) { bits[j] = (nib>>(3-j)) & 0x1; } return 0; } static int gencode(ui8_t msg[4], ui8_t code[8]) { int i, j; // Gm=c for (i = 0; i < 8; i++) { code[i] = 0; for (j = 0; j < 4; j++) { code[i] ^= G[i][j] & msg[j]; } } return 0; } static ui32_t bits2val(ui8_t *bits, int len) { // big endian int j; ui32_t val; if ((len < 0) || (len > 32)) return -1; // = 0xFFFF val = 0; for (j = 0; j < len; j++) { val |= (bits[j] << (len-1-j)); } return val; } static void deinterleave(hsbit_t *str, int L, hsbit_t *block) { int i, j; for (j = 0; j < B; j++) { // L = 7, 13 for (i = 0; i < L; i++) { block[B*i+j] = str[L*j+i]; } } } static int check(int opt_ecc, hsbit_t code[8]) { int i, j; // Bei Demodulierung durch Nulldurchgaenge, wenn durch Fehler ausser Takt, ui32_t synval = 0; // verschieben sich die bits. Fuer Hamming-Decode waere es besser, ui8_t syndrom[4]; // sync zu Beginn mit Header und dann Takt beibehalten fuer decision. int ret=0; for (i = 0; i < 4; i++) { // S = 4 syndrom[i] = 0; for (j = 0; j < 8; j++) { // B = 8 syndrom[i] ^= H[i][j] & code[j].hb; } } synval = bits2val(syndrom, 4); if (synval) { ret = -1; for (j = 0; j < 8; j++) { // 1-bit-error if (synval == He[j]) { // reicht auf databits zu pruefen, d.h. ret = j+1; // (systematischer Code) He[0..3] break; } } } else ret = 0; if (ret > 0) code[ret-1].hb ^= 0x1; // d=1: 1-bit-error else if (ret < 0 && opt_ecc == 2) { // d=2: 2-bit-error: soft decision // Hamming(8,4) // 256 words: // 16 codewords // 16*8=128 1-error words (dist=1) // 16*7=112 2-error words (dist=2) // each 2-error word has 4 codewords w/ dist=2, // choose best match/correlation int n; int maxn = -1; int d = 0; float sum = 0.0; float maxsum = 0.0; /* sum = 0.0; // s<0: h=0 , s>0: h=1 for (i = 0; i < 8; i++) { // h\in{0,1} -> 2h-1\in{-1,+1} sum += (2*code[i].hb-1)*code[i].sb; // i.e. sum_i |s_i| } // original score */ for (n = 0; n < 16; n++) { d = 0; for (i = 0; i < 8; i++) { // d(a,b) = sum_i a[i]^b[i] if (code[i].hb != codewords[n][i]) d++; } if (d == 2) { // check dist=2 codewords - in principle, all codewords could be tested // softbits correlation: // - interleaving // + no pulse-shaping -> sum sum = 0.0; for (i = 0; i < 8; i++) { sum += (2*codewords[n][i]-1) * code[i].sb; } if (sum >= maxsum) { // best match maxsum = sum; maxn = n; } } } if (maxn >= 0) { for (i = 0; i < 8; i++) { if (code[i].hb = codewords[maxn][i]); } } } return ret; } static int hamming(int opt_ecc, hsbit_t *ham, int L, ui8_t *sym) { int i, j; int ecc = 0, ret = 0; // L = 7, 13 for (i = 0; i < L; i++) { // L * 2 nibble (data+parity) if (opt_ecc) { ecc = check(opt_ecc, ham+B*i); if (ecc > 0) ret |= (1<>i)&1 ) ecn++; } return ecn; } static int dat_out(gpx_t *gpx, ui8_t *dat_bits, int ec) { int i, ret = 0; int fr_id; // int jahr = 0, monat = 0, tag = 0, std = 0, min = 0; int frnr = 0; int msek = 0; int lat = 0, lon = 0, alt = 0; int nib; int dvv; // signed/unsigned 16bit fr_id = bits2val(dat_bits+48, 4); if (fr_id >= 0 && fr_id <= 8) { for (i = 0; i < 13; i++) { nib = bits2val(dat_bits+4*i, 4); gpx->dat_str[fr_id][i] = nib2chr(nib); } gpx->dat_str[fr_id][13] = '\0'; gpx->pck[fr_id].ts = gpx->_frmcnt; // time_stamp,frame_count,... if (gpx->option.ecc) { gpx->pck[fr_id].ec = ec; // option_ecc laesst -1 garnicht durch if (ec > 0) { ui8_t ecn = cnt_biterr(ec); gpx->pck[fr_id].ec = ecn; if ((gpx->option.dst || gpx->option.jsn) && ecn > 4) gpx->pck[fr_id].ec = -2; // threshold: #errors > 4 } } } // GPS data // SiRF msg ID 41: Geodetic Navigation Data if (fr_id == 0) { //start = 0x1000; frnr = bits2val(dat_bits+24, 8); gpx->frnr = frnr; } if (fr_id == 1) { // 00..31: GPS-Sats in solution (bitmap) gpx->gps.prn = bits2val(dat_bits, 32); // SV/PRN used msek = bits2val(dat_bits+32, 16); // UTC (= GPS - 18sec ab 1.1.2017) gpx->sek = msek/1000.0; } if (fr_id == 2) { lat = bits2val(dat_bits, 32); gpx->lat = lat/1e7; dvv = (short)bits2val(dat_bits+32, 16); // (short)? zusammen mit dir sollte unsigned sein gpx->horiV = dvv/1e2; } if (fr_id == 3) { lon = bits2val(dat_bits, 32); gpx->lon = lon/1e7; dvv = bits2val(dat_bits+32, 16) & 0xFFFF; // unsigned gpx->dir = dvv/1e2; } if (fr_id == 4) { alt = bits2val(dat_bits, 32); gpx->alt = alt/1e2; dvv = (short)bits2val(dat_bits+32, 16); // signed gpx->vertV = dvv/1e2; } if (fr_id == 5) { short dMSL = bits2val(dat_bits, 16); gpx->gps.dMSL = dMSL/1e2; } if (fr_id == 6) { // sat data } if (fr_id == 7) { // sat data } if (fr_id == 8) { gpx->jahr = bits2val(dat_bits, 12); gpx->monat = bits2val(dat_bits+12, 4); gpx->tag = bits2val(dat_bits+16, 5); gpx->std = bits2val(dat_bits+21, 5); gpx->min = bits2val(dat_bits+26, 6); gpx->gps.nSV = bits2val(dat_bits+32, 8); } ret = fr_id; return ret; } // DFM-06 (NXP8) static float fl20(int d) { // float20 int val, p; float f; p = (d>>16) & 0xF; val = d & 0xFFFF; f = val/(float)(1<> 16) & 0xF; f = m / pow(2,e); return f; } */ // DFM-09 (STM32) static float fl24(int d) { // float24 int val, p; float f; p = (d>>20) & 0xF; val = d & 0xFFFFF; f = val/(float)(1<meas24[0], f1 = gpx->meas24[3], f2 = gpx->meas24[4]; if (gpx->ptu_out >= 0xC) { f = gpx->meas24[0+1]; f1 = gpx->meas24[3+2]; f2 = gpx->meas24[4+2]; } //float *meas = gpx->meas24; float B0 = 3260.0; // B/Kelvin, fit -55C..+40C float T0 = 25 + 273.15; // t0=25C float R0 = 5.0e3; // R0=R25=5k float Rf = 220e3; // Rf = 220k float g = f2/Rf; float R = (f-f1) / g; // meas[0,3,4] > 0 ? float T = 0; // T/Kelvin if (f*f1*f2 == 0) R = 0; if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0)); return T - 273.15; // Celsius // DFM-06: meas20 * 16 = meas24 // -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4] } static float get_Temp2(gpx_t *gpx) { // meas[0..4] // NTC-Thermistor EPCOS B57540G0502 // R/T No 8402, R25=Ro=5k // B0/100=3450 // 1/T = 1/To + 1/B log(r) , r=R/Ro // GRAW calibration data -80C..+40C on EEPROM ? // meas0 = g*(R+Rs)+ofs // meas3 = g*Rs+ofs , Rs: dfm6:10k, dfm9:20k // meas4 = g*Rf+ofs , Rf=220k float f = gpx->meas24[0], f1 = gpx->meas24[3], f2 = gpx->meas24[4]; if (gpx->ptu_out >= 0xC) { f = gpx->meas24[0+1]; f1 = gpx->meas24[3+2]; f2 = gpx->meas24[4+2]; } float B0 = 3260.0; // B/Kelvin, fit -55C..+40C float T0 = 25 + 273.15; // t0=25C float R0 = 5.0e3; // R0=R25=5k float Rf2 = 220e3; // Rf2 = Rf = 220k float g_o = f2/Rf2; // approx gain float Rs_o = f1/g_o; // = Rf2 * f1/f2; float Rf1 = Rs_o; // Rf1 = Rs: dfm6:10k, dfm9:20k float g = g_o; // gain float Rb = 0.0; // offset float R = 0; // thermistor float T = 0; // T/Kelvin // ptu_out=0xD: Rs_o=13.6, Rf2=? if ( 8e3 < Rs_o && Rs_o < 12e3) Rf1 = 10e3; // dfm6 else if (18e3 < Rs_o && Rs_o < 22e3) Rf1 = 20e3; // dfm9 g = (f2 - f1) / (Rf2 - Rf1); Rb = (f1*Rf2-f2*Rf1)/(f2-f1); // ofs/g R = (f-f1)/g; // meas[0,3,4] > 0 ? if (R > 0) T = 1/(1/T0 + 1/B0 * log(R/R0)); if (gpx->option.ptu && gpx->ptu_out && gpx->option.dbg) { printf(" (Rso: %.1f , Rb: %.1f)", Rs_o/1e3, Rb/1e3); } return T - 273.15; // DFM-06: meas20 * 16 = meas24 } static float get_Temp4(gpx_t *gpx) { // meas[0..4] // NTC-Thermistor EPCOS B57540G0502 // [ T/C , R/R25 , alpha ] : // [ -55.0 , 51.991 , 6.4 ] // [ -50.0 , 37.989 , 6.2 ] // [ -45.0 , 28.07 , 5.9 ] // [ -40.0 , 20.96 , 5.7 ] // [ -35.0 , 15.809 , 5.5 ] // [ -30.0 , 12.037 , 5.4 ] // [ -25.0 , 9.2484 , 5.2 ] // [ -20.0 , 7.1668 , 5.0 ] // [ -15.0 , 5.5993 , 4.9 ] // [ -10.0 , 4.4087 , 4.7 ] // [ -5.0 , 3.4971 , 4.6 ] // [ 0.0 , 2.7936 , 4.4 ] // [ 5.0 , 2.2468 , 4.3 ] // [ 10.0 , 1.8187 , 4.2 ] // [ 15.0 , 1.4813 , 4.0 ] // [ 20.0 , 1.2136 , 3.9 ] // [ 25.0 , 1.0000 , 3.8 ] // [ 30.0 , 0.82845 , 3.7 ] // [ 35.0 , 0.68991 , 3.6 ] // [ 40.0 , 0.57742 , 3.5 ] // -> Steinhart–Hart coefficients (polyfit): float p0 = 1.09698417e-03, p1 = 2.39564629e-04, p2 = 2.48821437e-06, p3 = 5.84354921e-08; // T/K = 1/( p0 + p1*ln(R) + p2*ln(R)^2 + p3*ln(R)^3 ) float f = gpx->meas24[0], f1 = gpx->meas24[3], f2 = gpx->meas24[4]; if (gpx->ptu_out >= 0xC) { f = gpx->meas24[0+1]; f1 = gpx->meas24[3+2]; f2 = gpx->meas24[4+2]; } //float *meas = gpx->meas24; float Rf = 220e3; // Rf = 220k float g = f2/Rf; float R = (f-f1) / g; // f,f1,f2 > 0 ? float T = 0; // T/Kelvin if (R > 0) T = 1/( p0 + p1*log(R) + p2*log(R)*log(R) + p3*log(R)*log(R)*log(R) ); return T - 273.15; // Celsius // DFM-06: meas20 * 16 = meas24 // -> (meas24[0]-meas24[3])/meas24[4]=(meas20[0]-meas20[3])/meas20[4] } #define SNbit 0x0100 static int conf_out(gpx_t *gpx, ui8_t *conf_bits, int ec) { int ret = 0; int val; ui8_t conf_id; ui8_t hl; ui32_t SN6, SN; ui8_t dfm6typ; ui8_t sn2_ch, sn_ch; conf_id = bits2val(conf_bits, 4); if (conf_id > 4 && bits2val(conf_bits+8, 4*5) == 0) gpx->snc.nul_ch = bits2val(conf_bits, 8); dfm6typ = ((gpx->snc.nul_ch & 0xF0)==0x50) && (gpx->snc.nul_ch & 0x0F); if (dfm6typ) gpx->ptu_out = 6; if (dfm6typ && (gpx->sonde_typ & 0xF) > 6) { // reset if 0x5A, 0x5B (DFM-06) gpx->sonde_typ = 0; gpx->snc.max_ch = conf_id; } if (conf_id > 5 && conf_id > gpx->snc.max_ch && ec == 0) { // mind. 6 Kanaele if (bits2val(conf_bits+4, 4) == 0xC) { // 0xsCaaaab gpx->snc.max_ch = conf_id; // reset? } /* if (bits2val(conf_bits, 8) == 0x70) { // 0x70aaaab gpx->snc.max_ch = conf_id; // reset? } */ } // SN: mind. 6 Kanaele if (conf_id > 5 && (conf_id == (gpx->snc.nul_ch>>4)+1 || conf_id == gpx->snc.max_ch)) { sn2_ch = bits2val(conf_bits, 8); sn_ch = ((sn2_ch>>4) & 0xF); // sn_ch == config_id if ( (gpx->snc.nul_ch & 0x58) == 0x58 ) { // 0x5A, 0x5B SN6 = bits2val(conf_bits+4, 4*6); // DFM-06: Kanal 6 if (SN6 == gpx->SN6 && SN6 != 0) { // nur Nibble-Werte 0..9 gpx->sonde_typ = SNbit | 6; gpx->ptu_out = 6; // <-> DFM-06 sprintf(gpx->sonde_id, "ID06:%6X", gpx->SN6); } else { // reset gpx->sonde_typ = 0; } gpx->SN6 = SN6; } // SN in last pck/channel, #{pcks} depends on (sensor) config; observed: else if ( (sn2_ch & 0xF) == 0xC // 0xsCaaaab, s==sn_ch , s: 0xA=DFM-09 , 0xC=DFM-09P , 0xB=DFM-17 , 0xD=DFM-17P? || (sn2_ch & 0xF) == 0x0 ) // 0xs0aaaab, s==sn_ch , s: 0x7,0x8: pilotsonde PS-15? { val = bits2val(conf_bits+8, 4*5); hl = (val & 0xF); if (hl < 2) { if ( gpx->snc.sn_ch != sn_ch ) { // -> sn_ch > 0 // reset gpx->snc.chXbit = 0; gpx->snc.chX[0] = 0; gpx->snc.chX[1] = 0; } gpx->snc.sn_ch = sn_ch; gpx->snc.chX[hl] = (val >> 4) & 0xFFFF; gpx->snc.chXbit |= 1 << hl; if (gpx->snc.chXbit == 3) { SN = (gpx->snc.chX[0] << 16) | gpx->snc.chX[1]; if ( SN == gpx->snc.SN_X || gpx->snc.SN_X == 0 ) { gpx->sonde_typ = SNbit | sn_ch; gpx->SN = SN; gpx->ptu_out = 0; if (sn_ch == 0xA /*&& (sn2_ch & 0xF) == 0xC*/) gpx->ptu_out = sn_ch; // <+> DFM-09 if (sn_ch == 0xB /*&& (sn2_ch & 0xF) == 0xC*/) gpx->ptu_out = sn_ch; // <-> DFM-17 if (sn_ch == 0xC) gpx->ptu_out = sn_ch; // <+> DFM-09P(?) if (sn_ch == 0xD) gpx->ptu_out = sn_ch; // <-> DFM-17P? // PS-15 ? (sn2_ch & 0xF) == 0x0 : gpx->ptu_out = 0 // <-> PS-15 if ( (gpx->sonde_typ & 0xF) == 0xA) { sprintf(gpx->sonde_id, "ID09:%6u", gpx->SN); } else { sprintf(gpx->sonde_id, "ID-%1X:%6u", gpx->sonde_typ & 0xF, gpx->SN); } } else { // reset gpx->sonde_typ = 0; } gpx->snc.SN_X = SN; gpx->snc.chXbit = 0; } } } ret = (gpx->sonde_typ & 0xF); } if (conf_id >= 0 && conf_id <= 4) { val = bits2val(conf_bits+4, 4*6); gpx->meas24[conf_id] = fl24(val); // DFM-09 (STM32): 24bit 0exxxxx // DFM-06 (NXP8): 20bit 0exxxx0 // fl20(bits2val(conf_bits+4, 4*5)) // = fl20(exxxx) // = fl24(exxxx0)/2^4 // meas20 * 16 = meas24 } if (gpx->ptu_out >= 0xC) { // DFM>=09(P) if (conf_id >= 5 && conf_id <= 6) { val = bits2val(conf_bits+4, 4*6); gpx->meas24[conf_id] = fl24(val); } } // STM32-status: Bat, MCU-Temp if (gpx->ptu_out >= 0xA) { // DFM>=09(P) (STM32) ui8_t ofs = 0; if (gpx->ptu_out >= 0xC) ofs = 2; if (conf_id == 0x5+ofs) { // voltage val = bits2val(conf_bits+8, 4*4); gpx->status[0] = val/1000.0; } if (conf_id == 0x6+ofs) { // T-intern (STM32) val = bits2val(conf_bits+8, 4*4); gpx->status[1] = val/100.0; } } else { gpx->status[0] = 0; gpx->status[1] = 0; } return ret; } static void print_gpx(gpx_t *gpx) { int i, j; int contgps = 0; int output = 0; int jsonout = 0; int start = 0; if (gpx->frnr > 0) start = 0x1000; output |= start; for (i = 0; i < 9/*8*/; i++) { // trigger: pck8 if ( !( (gpx->option.dst || gpx->option.jsn) && gpx->pck[i].ec < 0) ) { if (gpx->pck[8].ts - gpx->pck[i].ts < 6.0) { output |= (1<option.dst && gpx->pck[i].ec < 0) { output &= ~(1<option.dst && !contgps) { output = 0; } if (gpx->option.jsn && !contgps) { jsonout = 0; } if (output & 0xF000) { if (gpx->option.raw == 2) { for (i = 0; i < 9; i++) { printf(" %s", gpx->dat_str[i]); if (gpx->option.ecc) printf(" (%1X) ", gpx->pck[i].ec&0xF); } for (i = 0; i < 9; i++) { for (j = 0; j < 13; j++) gpx->dat_str[i][j] = ' '; } } else { if (gpx->option.aut && gpx->option.vbs >= 2) printf("<%c> ", gpx->option.inv?'-':'+'); printf("[%3d] ", gpx->frnr); printf("%4d-%02d-%02d ", gpx->jahr, gpx->monat, gpx->tag); printf("%02d:%02d:%04.1f ", gpx->std, gpx->min, gpx->sek); if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X,%1X,%1X) ", gpx->pck[0].ec&0xF, gpx->pck[8].ec&0xF, gpx->pck[1].ec&0xF); printf(" "); printf(" lat: %.5f ", gpx->lat); if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X) ", gpx->pck[2].ec&0xF); printf(" lon: %.5f ", gpx->lon); if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X) ", gpx->pck[3].ec&0xF); printf(" alt: %.1f ", gpx->alt); if (gpx->option.vbs >= 2 && gpx->option.ecc) printf("(%1X) ", gpx->pck[4].ec&0xF); printf(" vH: %5.2f ", gpx->horiV); printf(" D: %5.1f ", gpx->dir); printf(" vV: %5.2f ", gpx->vertV); if (gpx->option.ptu && gpx->ptu_out) { float t = get_Temp(gpx); if (t > -270.0) printf(" T=%.1fC ", t); if (gpx->option.dbg) { float t2 = get_Temp2(gpx); float t4 = get_Temp4(gpx); if (t2 > -270.0) printf(" T2=%.1fC ", t2); if (t4 > -270.0) printf(" T4=%.1fC ", t4); printf(" f0: %.2f ", gpx->meas24[0]); printf(" f1: %.2f ", gpx->meas24[1]); printf(" f2: %.2f ", gpx->meas24[2]); printf(" f3: %.2f ", gpx->meas24[3]); printf(" f4: %.2f ", gpx->meas24[4]); if (gpx->ptu_out >= 0xC) { printf(" f5: %.2f ", gpx->meas24[5]); printf(" f6: %.2f ", gpx->meas24[6]); } } } if (gpx->option.vbs == 3 && gpx->ptu_out >= 0xA) { printf(" U: %.2fV ", gpx->status[0]); printf(" Ti: %.1fK ", gpx->status[1]); } if (gpx->option.vbs) { if (gpx->sonde_typ & SNbit) { printf(" (%s) ", gpx->sonde_id); gpx->sonde_typ ^= SNbit; } } } printf("\n"); if (gpx->option.sat) { printf(" "); printf(" dMSL: %+.2f", gpx->gps.dMSL); // MSL = alt + gps.dMSL printf(" sats: %d", gpx->gps.nSV); printf(" ("); for (j = 0; j < 32; j++) { if ((gpx->gps.prn >> j)&1) printf(" %02d", j+1); } printf(" )"); printf("\n"); } if (gpx->option.jsn && jsonout) { // JSON Buffer to store sonde ID char json_sonde_id[] = "DFM-xxxxxxxx\0\0"; ui8_t dfm_typ = (gpx->sonde_typ & 0xF); switch ( dfm_typ ) { case 0: sprintf(json_sonde_id, "DFM-xxxxxxxx"); break; //json_sonde_id[0] = '\0'; case 6: sprintf(json_sonde_id, "DFM-%6X", gpx->SN6); break; // DFM-06 case 0xA: sprintf(json_sonde_id, "DFM-%6u", gpx->SN); break; // DFM-09 // 0x7:PS-15?, 0xB:DFM-17? 0xC:DFM-09P? 0xD:DFM-17P? default : sprintf(json_sonde_id, "DFM-%6u", gpx->SN); } // Print JSON blob // valid sonde_ID? printf("{ \"type\": \"%s\"", "DFM"); printf(", \"frame\": %d, \"id\": \"%s\", \"datetime\": \"%04d-%02d-%02dT%02d:%02d:%06.3fZ\", \"lat\": %.5f, \"lon\": %.5f, \"alt\": %.5f, \"vel_h\": %.5f, \"heading\": %.5f, \"vel_v\": %.5f", gpx->frnr, json_sonde_id, gpx->jahr, gpx->monat, gpx->tag, gpx->std, gpx->min, gpx->sek, gpx->lat, gpx->lon, gpx->alt, gpx->horiV, gpx->dir, gpx->vertV); if (gpx->ptu_out >= 0xA && gpx->status[0] > 0) { // DFM>=09(P): Battery (STM32) printf(", \"batt\": %.2f", gpx->status[0]); } if (gpx->ptu_out) { // get temperature float t = get_Temp(gpx); // ecc-valid temperature? if (t > -270.0) printf(", \"temp\": %.1f", t); } if (dfm_typ > 0) printf(", \"subtype\": \"0x%1X\"", dfm_typ); printf(" }\n"); printf("\n"); } } for (i = 0; i < 9; i++) gpx->pck[i].ec = -1; } static int print_frame(gpx_t *gpx) { int i; int nib = 0; int frid = -1; int ret0, ret1, ret2; int ret = 0; hsbit_t hamming_conf[ 7*B]; // 7*8=56 hsbit_t hamming_dat1[13*B]; // 13*8=104 hsbit_t hamming_dat2[13*B]; ui8_t block_conf[ 7*S]; // 7*4=28 ui8_t block_dat1[13*S]; // 13*4=52 ui8_t block_dat2[13*S]; deinterleave(gpx->frame+CONF, 7, hamming_conf); deinterleave(gpx->frame+DAT1, 13, hamming_dat1); deinterleave(gpx->frame+DAT2, 13, hamming_dat2); ret0 = hamming(gpx->option.ecc, hamming_conf, 7, block_conf); ret1 = hamming(gpx->option.ecc, hamming_dat1, 13, block_dat1); ret2 = hamming(gpx->option.ecc, hamming_dat2, 13, block_dat2); ret = ret0 | ret1 | ret2; if (gpx->option.raw == 1) { for (i = 0; i < 7; i++) { nib = bits2val(block_conf+S*i, S); printf("%01X", nib & 0xFF); } if (gpx->option.ecc) { if (ret0 == 0) printf(" [OK] "); else if (ret0 > 0) printf(" [KO] "); else printf(" [NO] "); } printf(" "); for (i = 0; i < 13; i++) { nib = bits2val(block_dat1+S*i, S); printf("%01X", nib & 0xFF); } if (gpx->option.ecc) { if (ret1 == 0) printf(" [OK] "); else if (ret1 > 0) printf(" [KO] "); else printf(" [NO] "); } printf(" "); for (i = 0; i < 13; i++) { nib = bits2val(block_dat2+S*i, S); printf("%01X", nib & 0xFF); } if (gpx->option.ecc) { if (ret2 == 0) printf(" [OK] "); else if (ret2 > 0) printf(" [KO] "); else printf(" [NO] "); } if (gpx->option.ecc && gpx->option.vbs) { if (gpx->option.vbs > 1) printf(" (%1X,%1X,%1X) ", cnt_biterr(ret0), cnt_biterr(ret1), cnt_biterr(ret2)); printf(" (%d) ", cnt_biterr(ret0)+cnt_biterr(ret1)+cnt_biterr(ret2)); } printf("\n"); } else if (gpx->option.ecc) { if (ret0 == 0 || ret0 > 0 || gpx->option.ecc == 2) { conf_out(gpx, block_conf, ret0); } if (ret1 == 0 || ret1 > 0 || gpx->option.ecc == 2) { frid = dat_out(gpx, block_dat1, ret1); if (frid == 8) print_gpx(gpx); } if (ret2 == 0 || ret2 > 0 || gpx->option.ecc == 2) { frid = dat_out(gpx, block_dat2, ret2); if (frid == 8) print_gpx(gpx); } } else { conf_out(gpx, block_conf, ret0); frid = dat_out(gpx, block_dat1, ret1); if (frid == 8) print_gpx(gpx); frid = dat_out(gpx, block_dat2, ret2); if (frid == 8) print_gpx(gpx); } return ret; } /* -------------------------------------------------------------------------- */ int main(int argc, char **argv) { int option_verbose = 0; // ausfuehrliche Anzeige int option_raw = 0; // rohe Frames int option_inv = 0; // invertiert Signal int option_ecc = 0; int option_ptu = 0; int option_dist = 0; // continuous pcks 0..8 int option_auto = 0; int option_min = 0; int option_iq = 0; int option_lp = 0; int option_dc = 0; int option_bin = 0; int option_softin = 0; int option_json = 0; // JSON blob output (for auto_rx) int option_pcmraw = 0; int wavloaded = 0; int sel_wavch = 0; // audio channel: left int spike = 0; FILE *fp = NULL; char *fpname = NULL; int ret = 0; int k; hsbit_t hsbit; int bitpos = 0; int bitQ; int pos; int frm = 0, nfrms = 8; // nfrms=1,2,4,8 int headerlen = 0; int header_found = 0; float thres = 0.65; float _mv = 0.0; int symlen = 2; int bitofs = 2; // +1 .. +2 int shift = 0; pcm_t pcm = {0}; dsp_t dsp = {0}; gpx_t gpx = {0}; hdb_t hdb = {0}; ui32_t hdrcnt = 0; #ifdef CYGWIN _setmode(fileno(stdin), _O_BINARY); // _setmode(_fileno(stdin), _O_BINARY); #endif setbuf(stdout, NULL); fpname = argv[0]; ++argv; while ((*argv) && (!wavloaded)) { if ( (strcmp(*argv, "-h") == 0) || (strcmp(*argv, "--help") == 0) ) { fprintf(stderr, "%s [options] audio.wav\n", fpname); fprintf(stderr, " options:\n"); fprintf(stderr, " -v, -vv\n"); fprintf(stderr, " -r, --raw\n"); fprintf(stderr, " -i, --invert\n"); fprintf(stderr, " --ecc (Hamming ECC)\n"); fprintf(stderr, " --ths (peak threshold; default=%.1f)\n", thres); fprintf(stderr, " --json (JSON output)\n"); return 0; } else if ( (strcmp(*argv, "-v") == 0) || (strcmp(*argv, "--verbose") == 0) ) { option_verbose = 1; } else if ( (strcmp(*argv, "-vv" ) == 0) ) { option_verbose = 2; } else if ( (strcmp(*argv, "-vvv") == 0) ) { option_verbose = 3; } else if ( (strcmp(*argv, "-r") == 0) || (strcmp(*argv, "--raw") == 0) ) { option_raw = 1; } else if ( (strcmp(*argv, "-R") == 0) || (strcmp(*argv, "--RAW") == 0) ) { option_raw = 2; } else if ( (strcmp(*argv, "-i") == 0) || (strcmp(*argv, "--invert") == 0) ) { option_inv = 0x1; } else if ( (strcmp(*argv, "--ecc" ) == 0) ) { option_ecc = 1; } else if ( (strcmp(*argv, "--ecc2") == 0) ) { option_ecc = 2; } else if ( (strcmp(*argv, "--ptu") == 0) ) { option_ptu = 1; //gpx.ptu_out = 1; // force ptu (non PS-15) } else if ( (strcmp(*argv, "--spike") == 0) ) { spike = 1; } else if (strcmp(*argv, "--auto") == 0) { option_auto = 1; } else if (strcmp(*argv, "--bin") == 0) { option_bin = 1; } // bit/byte binary input else if (strcmp(*argv, "--softin") == 0) { option_softin = 1; } // float32 soft input else if (strcmp(*argv, "--dist") == 0) { option_dist = 1; option_ecc = 1; } else if (strcmp(*argv, "--json") == 0) { option_json = 1; option_ecc = 1; } else if (strcmp(*argv, "--ch2") == 0) { sel_wavch = 1; } // right channel (default: 0=left) else if (strcmp(*argv, "--ths") == 0) { ++argv; if (*argv) { thres = atof(*argv); } else return -1; } else if ( (strcmp(*argv, "-d") == 0) ) { ++argv; if (*argv) { shift = atoi(*argv); if (shift > 4) shift = 4; if (shift < -4) shift = -4; } else return -1; } else if (strcmp(*argv, "--iq0") == 0) { option_iq = 1; } // differential/FM-demod else if (strcmp(*argv, "--iq2") == 0) { option_iq = 2; } else if (strcmp(*argv, "--iq3") == 0) { option_iq = 3; } // iq2==iq3 else if (strcmp(*argv, "--IQ") == 0) { // fq baseband -> IF (rotate from and decimate) double fq = 0.0; // --IQ , -0.5 < fq < 0.5 ++argv; if (*argv) fq = atof(*argv); else return -1; if (fq < -0.5) fq = -0.5; if (fq > 0.5) fq = 0.5; dsp.xlt_fq = -fq; // S(t) -> S(t)*exp(-f*2pi*I*t) option_iq = 5; } else if (strcmp(*argv, "--lp") == 0) { option_lp = 1; } // IQ lowpass else if (strcmp(*argv, "--dc") == 0) { option_dc = 1; } else if (strcmp(*argv, "--min") == 0) { option_min = 1; } else if (strcmp(*argv, "--dbg") == 0) { gpx.option.dbg = 1; } else if (strcmp(*argv, "--sat") == 0) { gpx.option.sat = 1; } else if (strcmp(*argv, "-") == 0) { int sample_rate = 0, bits_sample = 0, channels = 0; ++argv; if (*argv) sample_rate = atoi(*argv); else return -1; ++argv; if (*argv) bits_sample = atoi(*argv); else return -1; channels = 2; if (sample_rate < 1 || (bits_sample != 8 && bits_sample != 16 && bits_sample != 32)) { fprintf(stderr, "- \n"); return -1; } pcm.sr = sample_rate; pcm.bps = bits_sample; pcm.nch = channels; option_pcmraw = 1; } else { fp = fopen(*argv, "rb"); if (fp == NULL) { fprintf(stderr, "error: open %s\n", *argv); return -1; } wavloaded = 1; } ++argv; } if (!wavloaded) fp = stdin; // ecc2-soft_decision accepts also 2-error words, // so the probability for 3 errors is high and will // produce wrong codewords. hence ecc2 is not recommended // for reliable frame decoding. // if ( option_dist || option_json ) option_ecc = 1; if (option_ecc) { ui8_t nib, msg[4], code[8]; for (nib = 0; nib < 16; nib++) { nib4bits(nib, msg); gencode(msg, code); for (k = 0; k < 8; k++) codewords[nib][k] = code[k]; } } // init gpx //strcpy(gpx.frame_bits, dfm_header); //, sizeof(dfm_header); for (k = 0; k < strlen(dfm_header); k++) { gpx.frame[k].hb = dfm_header[k] & 1; gpx.frame[k].sb = 2*gpx.frame[k].hb - 1; } for (k = 0; k < 9; k++) gpx.pck[k].ec = -1; // init ecc-status gpx.option.inv = option_inv; gpx.option.vbs = option_verbose; gpx.option.raw = option_raw; gpx.option.ptu = option_ptu; gpx.option.ecc = option_ecc; gpx.option.aut = option_auto; gpx.option.dst = option_dist; gpx.option.jsn = option_json; headerlen = strlen(dfm_rawheader); #ifdef EXT_FSK if (!option_bin && !option_softin) { option_softin = 1; fprintf(stderr, "reading float32 soft symbols\n"); } #endif if (!option_bin && !option_softin) { if (option_iq == 0 && option_pcmraw) { fclose(fp); fprintf(stderr, "error: raw data not IQ\n"); return -1; } if (option_iq) sel_wavch = 0; pcm.sel_ch = sel_wavch; if (option_pcmraw == 0) { k = read_wav_header(&pcm, fp); if ( k < 0 ) { fclose(fp); fprintf(stderr, "error: wav header\n"); return -1; } } // dfm: BT=1?, h=2.4? symlen = 2; // init dsp // dsp.fp = fp; dsp.sr = pcm.sr; dsp.bps = pcm.bps; dsp.nch = pcm.nch; dsp.ch = pcm.sel_ch; dsp.br = (float)BAUD_RATE; dsp.sps = (float)dsp.sr/dsp.br; dsp.symlen = symlen; dsp.symhd = symlen; dsp._spb = dsp.sps*symlen; dsp.hdr = dfm_rawheader; dsp.hdrlen = strlen(dfm_rawheader); dsp.BT = 0.5; // bw/time (ISI) // 0.3..0.5 dsp.h = 1.8; // 2.4 modulation index abzgl. BT dsp.opt_iq = option_iq; dsp.opt_lp = option_lp; dsp.lpIQ_bw = 12e3; // IF lowpass bandwidth dsp.lpFM_bw = 4e3; // FM audio lowpass dsp.opt_dc = option_dc; dsp.opt_IFmin = option_min; if ( dsp.sps < 8 ) { fprintf(stderr, "note: sample rate low\n"); } k = init_buffers(&dsp); if ( k < 0 ) { fprintf(stderr, "error: init buffers\n"); return -1; } bitofs += shift; } else { if (option_bin && option_softin) option_bin = 0; // init circular header bit buffer hdb.hdr = dfm_rawheader; hdb.len = strlen(dfm_rawheader); hdb.thb = 1.0 - 2.1/(float)hdb.len; // 1.0-max_bit_errors/hdrlen // max 1.1 !! hdb.bufpos = -1; hdb.buf = calloc(hdb.len, sizeof(char)); if (hdb.buf == NULL) { fprintf(stderr, "error: malloc\n"); return -1; } hdb.ths = 0.7; // caution/test false positive hdb.sbuf = calloc(hdb.len, sizeof(float)); if (hdb.sbuf == NULL) { fprintf(stderr, "error: malloc\n"); return -1; } } while ( 1 ) { if (option_bin) { // aka find_binrawhead() header_found = find_binhead(fp, &hdb, &_mv); // symbols or bits? hdrcnt += nfrms; } else if (option_softin) { header_found = find_softbinhead(fp, &hdb, &_mv); hdrcnt += nfrms; } else { //2 (false positive) // FM-audio: header_found = find_header(&dsp, thres, 2, bitofs, dsp.opt_dc); // optional 2nd pass: dc=0 _mv = dsp.mv; } if (header_found == EOF) break; // mv == correlation score if (_mv *(0.5-gpx.option.inv) < 0) { if (gpx.option.aut == 0) header_found = 0; else gpx.option.inv ^= 0x1; } if (header_found) { bitpos = 0; pos = headerlen; pos /= 2; //if (fabs(mv) > 0.85) nfrms = 8; else nfrms = 4; // test OK/KO/NO count frm = 0; while ( frm < nfrms ) { // nfrms=1,2,4,8 if (option_bin || option_softin) { gpx._frmcnt = hdrcnt + frm; } else { gpx._frmcnt = dsp.mv_pos/(2.0*dsp.sps*BITFRAME_LEN) + frm; } while ( pos < BITFRAME_LEN ) { if (option_bin) { // symbols or bits? // manchester1 1->10,0->01: 1.bit (DFM-06) // manchester2 0->10,1->01: 2.bit (DFM-09) bitQ = fgetc(fp); if (bitQ != EOF) { hsbit.hb = bitQ & 0x1; bitQ = fgetc(fp); // check: rbit0^rbit1=1 (Manchester) if (bitQ != EOF) hsbit.hb = bitQ & 0x1; // 2.bit (DFM-09) hsbit.sb = 2*hsbit.hb - 1; } } else if (option_softin) { float s1 = 0.0; float s2 = 0.0; float s = 0.0; bitQ = f32soft_read(fp, &s1); if (bitQ != EOF) { bitQ = f32soft_read(fp, &s2); if (bitQ != EOF) { s = s2-s1; // integrate both symbols // only 2nd Manchester symbol: s2 hsbit.sb = s; hsbit.hb = (s>=0.0); } } } else { float bl = -1; if (option_iq >= 2) spike = 0; if (option_iq > 2) bl = 4.0; bitQ = read_softbit(&dsp, &hsbit, 0, bitofs, bitpos, bl, spike); // symlen=2 // optional: // normalize soft bit s_j by // rhsbit.sb /= dsp._spb+1; // all samples in [-1,+1] } if ( bitQ == EOF ) { frm = nfrms; break; } // liest 2x EOF if (gpx.option.inv) { hsbit.hb ^= 1; hsbit.sb = -hsbit.sb; } gpx.frame[pos] = hsbit; pos++; bitpos += 1; } ret = print_frame(&gpx); if (pos < BITFRAME_LEN) break; pos = 0; frm += 1; //if (ret < 0) frms += 1; } } header_found = 0; pos = headerlen; } if (!option_bin && !option_softin) free_buffers(&dsp); else { if (hdb.buf) { free(hdb.buf); hdb.buf = NULL; } } fclose(fp); return 0; }