/* * sync header: correlation/matched filter * compile: * gcc -c demod_mod.c * speedup: * gcc -O2 -c demod_mod.c * or * gcc -Ofast -c demod_mod.c * * author: zilog80 */ /* ------------------------------------------------------------------------------------ */ #include #include #include #include "demod_mod.h" #define FM_GAIN (0.8) /* ------------------------------------------------------------------------------------ */ #ifndef EXT_FSK static void raw_dft(dft_t *dft, float complex *Z) { int s, l, l2, i, j, k; float complex w1, w2, T; j = 1; for (i = 1; i < dft->N; i++) { if (i < j) { T = Z[j-1]; Z[j-1] = Z[i-1]; Z[i-1] = T; } k = dft->N/2; while (k < j) { j = j - k; k = k/2; } j = j + k; } for (s = 0; s < dft->LOG2N; s++) { l2 = 1 << s; l = l2 << 1; w1 = (float complex)1.0; w2 = dft->ew[s]; // cexp(-I*M_PI/(float)l2) for (j = 1; j <= l2; j++) { for (i = j; i <= dft->N; i += l) { k = i + l2; T = Z[k-1] * w1; Z[k-1] = Z[i-1] - T; Z[i-1] = Z[i-1] + T; } w1 = w1 * w2; } } } static void cdft(dft_t *dft, float complex *z, float complex *Z) { int i; for (i = 0; i < dft->N; i++) Z[i] = z[i]; raw_dft(dft, Z); } static void rdft(dft_t *dft, float *x, float complex *Z) { int i; for (i = 0; i < dft->N; i++) Z[i] = (float complex)x[i]; raw_dft(dft, Z); } static void Nidft(dft_t *dft, float complex *Z, float complex *z) { int i; for (i = 0; i < dft->N; i++) z[i] = conj(Z[i]); raw_dft(dft, z); // idft(): // for (i = 0; i < dft->N; i++) z[i] = conj(z[i])/(float)dft->N; // hier: z reell } static float bin2freq0(dft_t *dft, int k) { float fq = dft->sr * k / /*(float)*/dft->N; if (fq >= dft->sr/2.0) fq -= dft->sr; return fq; } static float bin2freq(dft_t *dft, int k) { float fq = k / (float)dft->N; if ( fq >= 0.5) fq -= 1.0; return fq*dft->sr; } static float bin2fq(dft_t *dft, int k) { float fq = k / (float)dft->N; if ( fq >= 0.5) fq -= 1.0; return fq; } static int max_bin(dft_t *dft, float complex *Z) { int k, kmax; double max; max = 0; kmax = 0; for (k = 0; k < dft->N; k++) { if (cabs(Z[k]) > max) { max = cabs(Z[k]); kmax = k; } } return kmax; } static int dft_window(dft_t *dft, int w) { int n; if (w < 0 || w > 3) return -1; for (n = 0; n < dft->N2; n++) { switch (w) { case 0: // (boxcar) dft->win[n] = 1.0; break; case 1: // Hann dft->win[n] = 0.5 * ( 1.0 - cos(2*M_PI*n/(float)(dft->N2-1)) ); break ; case 2: // Hamming dft->win[n] = 25/46.0 - (1.0 - 25/46.0)*cos(2*M_PI*n / (float)(dft->N2-1)); break ; case 3: // Blackmann dft->win[n] = 7938/18608.0 - 9240/18608.0*cos(2*M_PI*n / (float)(dft->N2-1)) + 1430/18608.0*cos(4*M_PI*n / (float)(dft->N2-1)); break ; } } while (n < dft->N) dft->win[n++] = 0.0; return 0; } /* ------------------------------------------------------------------------------------ */ static int getCorrDFT(dsp_t *dsp) { int i; int mp = -1; float mx = 0.0; float mx2 = 0.0; float re_cx = 0.0; float xnorm = 1; ui32_t mpos = 0; ui32_t pos = dsp->sample_out; double dc = 0.0; int mp_ofs = 0; float *sbuf = dsp->bufs; dsp->mv = 0.0; dsp->dc = 0.0; if (dsp->K + dsp->L > dsp->DFT.N) return -1; if (dsp->sample_out < dsp->L) return -2; if (dsp->opt_iq > 1 && dsp->opt_dc) { mp_ofs = (dsp->sps-1)/2; sbuf = dsp->fm_buffer; } else { sbuf = dsp->bufs; } for (i = 0; i < dsp->K + dsp->L; i++) (dsp->DFT).xn[i] = sbuf[(pos+dsp->M -(dsp->K + dsp->L-1) + i) % dsp->M]; while (i < dsp->DFT.N) (dsp->DFT).xn[i++] = 0.0; rdft(&dsp->DFT, dsp->DFT.xn, dsp->DFT.X); if (dsp->opt_dc) { //X[0] = 0; // nicht ueber gesamte Laenge ... M10 // // L < K ? // only last 2L samples (avoid M10 carrier offset) dc = 0.0; for (i = dsp->K - dsp->L; i < dsp->K + dsp->L; i++) dc += (dsp->DFT).xn[i]; dc /= 2.0*(float)dsp->L; dsp->DFT.X[0] -= dsp->DFT.N * dc ;//* 0.95; Nidft(&dsp->DFT, dsp->DFT.X, (dsp->DFT).cx); for (i = 0; i < dsp->DFT.N; i++) (dsp->DFT).xn[i] = creal((dsp->DFT).cx[i])/(float)dsp->DFT.N; } for (i = 0; i < dsp->DFT.N; i++) dsp->DFT.Z[i] = dsp->DFT.X[i]*dsp->DFT.Fm[i]; Nidft(&dsp->DFT, dsp->DFT.Z, dsp->DFT.cx); if (fabs(dc) < 0.5) dsp->dc = dc; // relativ Peak - Normierung erst zum Schluss; // dann jedoch nicht zwingend corr-Max wenn FM-Amplitude bzw. norm(x) nicht konstant // (z.B. rs41 Signal-Pausen). Moeglicherweise wird dann wahres corr-Max in dem // K-Fenster nicht erkannt, deshalb K nicht zu gross waehlen. // mx2 = 0.0; // t = L-1 for (i = dsp->L-1; i < dsp->K + dsp->L; i++) { // i=t .. i=t+K < t+1+K re_cx = creal(dsp->DFT.cx[i]); // imag(cx)=0 if (re_cx*re_cx > mx2) { mx = re_cx; mx2 = mx*mx; mp = i; } } if (mp == dsp->L-1 || mp == dsp->K + dsp->L-1) return -4; // Randwert // mp == t mp == K+t mpos = pos - (dsp->K + dsp->L-1) + mp; // t = L-1 //xnorm = sqrt(dsp->qs[(mpos + 2*dsp->M) % dsp->M]); // Nvar = L xnorm = 0.0; for (i = 0; i < dsp->L; i++) xnorm += (dsp->DFT).xn[mp-i]*(dsp->DFT).xn[mp-i]; xnorm = sqrt(xnorm); mx /= xnorm*(dsp->DFT).N; if (dsp->opt_iq > 1 && dsp->opt_dc) mpos += mp_ofs; dsp->mv = mx; dsp->mv_pos = mpos; if (pos == dsp->sample_out) dsp->buffered = dsp->sample_out - mpos; // FM: s = gain * carg(w)/M_PI = gain * dphi / PI // gain=0.8 // FM audio gain? dc relative to FM-envelope?! // dsp->dDf = dsp->sr * dsp->dc / (2.0*FM_GAIN); // remaining freq offset return mp; } /* ------------------------------------------------------------------------------------ */ static int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } float read_wav_header(pcm_t *pcm, FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; int sample_rate = 0, bits_sample = 0, channels = 0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(txt, 1, 4, fp) < 4) return -1; // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); if (fread(dat, 1, 4, fp) < 4) return -1; memcpy(&sample_rate, dat, 4); //sample_rate = dat[0]|(dat[1]<<8)|(dat[2]<<16)|(dat[3]<<24); if (fread(dat, 1, 4, fp) < 4) return -1; if (fread(dat, 1, 2, fp) < 2) return -1; //byte = dat[0] + (dat[1] << 8); if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if (pcm->sel_ch < 0 || pcm->sel_ch >= channels) pcm->sel_ch = 0; // default channel: 0 //fprintf(stderr, "channel-In : %d\n", pcm->sel_ch+1); // nur wenn nicht IQ if (bits_sample != 8 && bits_sample != 16 && bits_sample != 32) return -1; pcm->sr = sample_rate; pcm->bps = bits_sample; pcm->nch = channels; return 0; } static int f32read_sample(dsp_t *dsp, float *s) { int i; unsigned int word = 0; short *b = (short*)&word; float *f = (float*)&word; for (i = 0; i < dsp->nch; i++) { if (fread( &word, dsp->bps/8, 1, dsp->fp) != 1) return EOF; if (i == dsp->ch) { // i = 0: links bzw. mono //if (bits_sample == 8) sint = b-128; // 8bit: 00..FF, centerpoint 0x80=128 //if (bits_sample == 16) sint = (short)b; if (dsp->bps == 32) { *s = *f; } else { if (dsp->bps == 8) { *b -= 128; } *s = *b/128.0; if (dsp->bps == 16) { *s /= 256.0; } } } } return 0; } typedef struct { double sumIQx; double sumIQy; float avgIQx; float avgIQy; ui32_t cnt; ui32_t maxcnt; ui32_t maxlim; } iq_dc_t; static iq_dc_t IQdc; static int f32read_csample(dsp_t *dsp, float complex *z) { float x, y; if (dsp->bps == 32) { //float32 float f[2]; if (fread( f, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = f[0]; y = f[1]; } else if (dsp->bps == 16) { //int16 short b[2]; if (fread( b, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = b[0]/32768.0; y = b[1]/32768.0; } else { // dsp->bps == 8 //uint8 ui8_t u[2]; if (fread( u, dsp->bps/8, 2, dsp->fp) != 2) return EOF; x = (u[0]-128)/128.0; y = (u[1]-128)/128.0; } *z = (x - IQdc.avgIQx) + I*(y - IQdc.avgIQy); IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } return 0; } static int f32read_cblock(dsp_t *dsp) { int n; int len; float x, y; len = dsp->decM; if (dsp->bps == 8) { //uint8 ui8_t u[2*dsp->decM]; len = fread( u, dsp->bps/8, 2*dsp->decM, dsp->fp) / 2; //for (n = 0; n < len; n++) dsp->decMbuf[n] = (u[2*n]-128)/128.0 + I*(u[2*n+1]-128)/128.0; // u8: 0..255, 128 -> 0V for (n = 0; n < len; n++) { x = (u[2*n ]-128)/128.0; y = (u[2*n+1]-128)/128.0; dsp->decMbuf[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy); IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } } } else if (dsp->bps == 16) { //int16 short b[2*dsp->decM]; len = fread( b, dsp->bps/8, 2*dsp->decM, dsp->fp) / 2; for (n = 0; n < len; n++) { x = b[2*n ]/32768.0; y = b[2*n+1]/32768.0; dsp->decMbuf[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy); IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } } } else { // dsp->bps == 32 //float32 float f[2*dsp->decM]; len = fread( f, dsp->bps/8, 2*dsp->decM, dsp->fp) / 2; for (n = 0; n < len; n++) { x = f[2*n]; y = f[2*n+1]; dsp->decMbuf[n] = (x-IQdc.avgIQx) + I*(y-IQdc.avgIQy); IQdc.sumIQx += x; IQdc.sumIQy += y; IQdc.cnt += 1; if (IQdc.cnt == IQdc.maxcnt) { IQdc.avgIQx = IQdc.sumIQx/(float)IQdc.maxcnt; IQdc.avgIQy = IQdc.sumIQy/(float)IQdc.maxcnt; IQdc.sumIQx = 0; IQdc.sumIQy = 0; IQdc.cnt = 0; if (IQdc.maxcnt < IQdc.maxlim) IQdc.maxcnt *= 2; } } } return len; } /* static int get_SNR_rs41(dsp_t *dsp) { if (dsp->opt_iq) // if(dsp->rs_typ == RS41) { if (dsp->sample_posnoise > 0) // rs41 { if (dsp->sample_out >= dsp->sample_posframe && dsp->sample_out < dsp->sample_posframe+dsp->len_sq) { if (dsp->sample_out == dsp->sample_posframe) dsp->V_signal = 0.0; dsp->V_signal += cabs(dsp->rot_iqbuf[dsp->sample_out % dsp->N_IQBUF]); } if (dsp->sample_out == dsp->sample_posframe+dsp->len_sq) dsp->V_signal /= (double)dsp->len_sq; if (dsp->sample_out >= dsp->sample_posnoise && dsp->sample_out < dsp->sample_posnoise+dsp->len_sq) { if (dsp->sample_out == dsp->sample_posnoise) dsp->V_noise = 0.0; dsp->V_noise += cabs(dsp->rot_iqbuf[dsp->sample_out % dsp->N_IQBUF]); } if (dsp->sample_out == dsp->sample_posnoise+dsp->len_sq) { dsp->V_noise /= (double)dsp->len_sq; if (dsp->V_signal > 0 && dsp->V_noise > 0) { // iq-samples/V [-1..1] // dBw = 2*dBv, P=c*U*U // dBw = 2*10*log10(V/V0) dsp->SNRdB = 20.0 * log10(dsp->V_signal/dsp->V_noise+1e-20); } } } } else dsp->SNRdB = 0; return 0; } */ // decimate lowpass static float *ws_dec; static double sinc(double x) { double y; if (x == 0) y = 1; else y = sin(M_PI*x)/(M_PI*x); return y; } static int lowpass_init(float f, int taps, float **pws) { double *h, *w; double norm = 0; int n; float *ws = NULL; if (taps % 2 == 0) taps++; // odd/symmetric if ( taps < 1 ) taps = 1; h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1; w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1; ws = (float*)calloc( 2*taps+1, sizeof(float)); if (ws == NULL) return -1; for (n = 0; n < taps; n++) { w[n] = 7938/18608.0 - 9240/18608.0*cos(2*M_PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann h[n] = 2*f*sinc(2*f*(n-(taps-1)/2)); ws[n] = w[n]*h[n]; norm += ws[n]; // 1-norm } for (n = 0; n < taps; n++) { ws[n] /= norm; // 1-norm } for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; // duplicate/unwrap *pws = ws; free(h); h = NULL; free(w); w = NULL; return taps; } static int lowpass_update(float f, int taps, float *ws) { double *h, *w; double norm = 0; int n; if (taps % 2 == 0) taps++; // odd/symmetric if ( taps < 1 ) taps = 1; h = (double*)calloc( taps+1, sizeof(double)); if (h == NULL) return -1; w = (double*)calloc( taps+1, sizeof(double)); if (w == NULL) return -1; for (n = 0; n < taps; n++) { w[n] = 7938/18608.0 - 9240/18608.0*cos(2*M_PI*n/(taps-1)) + 1430/18608.0*cos(4*M_PI*n/(taps-1)); // Blackmann h[n] = 2*f*sinc(2*f*(n-(taps-1)/2)); ws[n] = w[n]*h[n]; norm += ws[n]; // 1-norm } for (n = 0; n < taps; n++) { ws[n] /= norm; // 1-norm } for (n = 0; n < taps; n++) ws[taps+n] = ws[n]; free(h); h = NULL; free(w); w = NULL; return taps; } static float complex lowpass0(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { ui32_t n; double complex w = 0; for (n = 0; n < taps; n++) { w += buffer[(sample+n+1)%taps]*ws[taps-1-n]; } return (float complex)w; } static float complex lowpass(float complex buffer[], ui32_t sample, ui32_t taps, float *ws) { ui32_t n; ui32_t s = sample % taps; double complex w = 0; for (n = 0; n < taps; n++) { w += buffer[n]*ws[taps+s-n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps] } return (float complex)w; // symmetry: ws[n] == ws[taps-1-n] } static float re_lowpass0(float buffer[], ui32_t sample, ui32_t taps, float *ws) { ui32_t n; double w = 0; for (n = 0; n < taps; n++) { w += buffer[(sample+n+1)%taps]*ws[taps-1-n]; } return (float)w; } static float re_lowpass(float buffer[], ui32_t sample, ui32_t taps, float *ws) { ui32_t n; ui32_t s = sample % taps; double w = 0; for (n = 0; n < taps; n++) { w += buffer[n]*ws[taps+s-n]; // ws[taps+s-n] = ws[(taps+sample-n)%taps] } return (float)w; } int f32buf_sample(dsp_t *dsp, int inv) { float s = 0.0; float xneu, xalt; float complex z, w, z0; double gain = FM_GAIN; double t = dsp->sample_in / (double)dsp->sr; if (dsp->opt_iq) { if (dsp->opt_iq == 5) { ui32_t s_reset = dsp->dectaps*dsp->lut_len; int j; if ( f32read_cblock(dsp) < dsp->decM ) return EOF; for (j = 0; j < dsp->decM; j++) { dsp->decXbuffer[dsp->sample_dec % dsp->dectaps] = dsp->decMbuf[j] * dsp->ex[dsp->sample_dec % dsp->lut_len]; dsp->sample_dec += 1; if (dsp->sample_dec == s_reset) dsp->sample_dec = 0; } z = lowpass(dsp->decXbuffer, dsp->sample_dec, dsp->dectaps, ws_dec); } else if ( f32read_csample(dsp, &z) == EOF ) return EOF; z *= cexp(-t*2*M_PI*dsp->Df*I); // IF-lowpass if (dsp->opt_lp) { dsp->lpIQ_buf[dsp->sample_in % dsp->lpIQtaps] = z; z = lowpass(dsp->lpIQ_buf, dsp->sample_in, dsp->lpIQtaps, dsp->ws_lpIQ); } z0 = dsp->rot_iqbuf[(dsp->sample_in-1 + dsp->N_IQBUF) % dsp->N_IQBUF]; w = z * conj(z0); s = gain * carg(w)/M_PI; dsp->rot_iqbuf[dsp->sample_in % dsp->N_IQBUF] = z; // FM-lowpass if (dsp->opt_lp) { dsp->lpFM_buf[dsp->sample_in % dsp->lpFMtaps] = s; s = re_lowpass(dsp->lpFM_buf, dsp->sample_in, dsp->lpFMtaps, dsp->ws_lpFM); } dsp->fm_buffer[(dsp->sample_in - dsp->lpFMtaps/2 + dsp->M) % dsp->M] = s; if (dsp->opt_iq >= 2) { double xbit = 0.0; //float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps); double f1 = -dsp->h*dsp->sr/(2*dsp->sps); double f2 = -f1; float complex X0 = 0; float complex X = 0; int n = dsp->sps; double tn = (dsp->sample_in-n) / (double)dsp->sr; //t = dsp->sample_in / (double)dsp->sr; //z = dsp->rot_iqbuf[dsp->sample_in % dsp->N_IQBUF]; z0 = dsp->rot_iqbuf[(dsp->sample_in-n + dsp->N_IQBUF) % dsp->N_IQBUF]; // f1 X0 = z0 * cexp(-tn*2*M_PI*f1*I); // alt X = z * cexp(-t *2*M_PI*f1*I); // neu dsp->F1sum += X - X0; // f2 X0 = z0 * cexp(-tn*2*M_PI*f2*I); // alt X = z * cexp(-t *2*M_PI*f2*I); // neu dsp->F2sum += X - X0; xbit = cabs(dsp->F2sum) - cabs(dsp->F1sum); s = xbit / dsp->sps; } else if (0 && dsp->opt_iq >= 4) { double xbit = 0.0; //float complex xi = cexp(+I*M_PI*dsp->h/dsp->sps); double f1 = -dsp->h*dsp->sr/(2*dsp->sps); double f2 = -f1; float complex X1 = 0; float complex X2 = 0; int n = dsp->sps; while (n > 0) { n--; t = -n / (double)dsp->sr; z = dsp->rot_iqbuf[(dsp->sample_in - n + dsp->N_IQBUF) % dsp->N_IQBUF]; // +1 X1 += z*cexp(-t*2*M_PI*f1*I); X2 += z*cexp(-t*2*M_PI*f2*I); } xbit = cabs(X2) - cabs(X1); s = xbit / dsp->sps; } } else { if (f32read_sample(dsp, &s) == EOF) return EOF; } if (inv) s = -s; dsp->bufs[dsp->sample_in % dsp->M] = s; xneu = dsp->bufs[(dsp->sample_in ) % dsp->M]; xalt = dsp->bufs[(dsp->sample_in+dsp->M - dsp->Nvar) % dsp->M]; dsp->xsum += xneu - xalt; // + xneu - xalt dsp->qsum += (xneu - xalt)*(xneu + xalt); // + xneu*xneu - xalt*xalt dsp->xs[dsp->sample_in % dsp->M] = dsp->xsum; dsp->qs[dsp->sample_in % dsp->M] = dsp->qsum; dsp->sample_out = dsp->sample_in - dsp->delay; dsp->sample_in += 1; return 0; } static int read_bufbit(dsp_t *dsp, int symlen, char *bits, ui32_t mvp, int pos) { // symlen==2: manchester2 0->10,1->01->1: 2.bit double rbitgrenze = pos*symlen*dsp->sps; ui32_t rcount = ceil(rbitgrenze);//+0.99; // dfm? double sum = 0.0; // bei symlen=2 (Manchester) kein dc noetig: -dc+dc=0 ; // allerdings M10-header mit symlen=1 rbitgrenze += dsp->sps; do { sum += dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dsp->dc; rcount++; } while (rcount < rbitgrenze); // n < dsp->sps if (symlen == 2) { rbitgrenze += dsp->sps; do { sum -= dsp->bufs[(rcount + mvp + dsp->M) % dsp->M] - dsp->dc; rcount++; } while (rcount < rbitgrenze); // n < dsp->sps } if (symlen != 2) { if (sum >= 0) *bits = '1'; else *bits = '0'; } else { if (sum >= 0) strncpy(bits, "10", 2); else strncpy(bits, "01", 2); } return 0; } static int headcmp(dsp_t *dsp, int opt_dc) { int errs = 0; int pos; int step = 1; char sign = 0; int len = dsp->hdrlen/dsp->symhd; int inv = dsp->mv < 0; if (opt_dc == 0 || dsp->opt_iq > 1) dsp->dc = 0; // reset? e.g. 2nd pass if (dsp->symhd != 1) step = 2; if (inv) sign=1; for (pos = 0; pos < len; pos++) { // L = dsp->hdrlen * dsp->sps + 0.5; //read_bufbit(dsp, dsp->symhd, dsp->rawbits+pos*step, mvp+1-(int)(len*dsp->sps), pos); read_bufbit(dsp, dsp->symhd, dsp->rawbits+pos*step, dsp->mv_pos+1-dsp->L, pos); } dsp->rawbits[pos] = '\0'; while (len > 0) { if ((dsp->rawbits[len-1]^sign) != dsp->hdr[len-1]) errs += 1; len--; } return errs; } /* -------------------------------------------------------------------------- */ int read_slbit(dsp_t *dsp, int *bit, int inv, int ofs, int pos, float l, int spike) { // symlen==2: manchester2 10->0,01->1: 2.bit float sample; float avg; float ths = 0.5, scale = 0.27; double sum = 0.0; double mid; //double l = 1.0; double bg = pos*dsp->symlen*dsp->sps; double dc = 0.0; if (dsp->opt_dc && dsp->opt_iq < 2) dc = dsp->dc; if (pos == 0) { bg = 0; dsp->sc = 0; } if (dsp->symlen == 2) { mid = bg + (dsp->sps-1)/2.0; bg += dsp->sps; do { if (dsp->buffered > 0) dsp->buffered -= 1; else if (f32buf_sample(dsp, inv) == EOF) return EOF; sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M]; if (spike && fabs(sample - avg) > ths) { avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M] +dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]); sample = avg + scale*(sample - avg); // spikes } sample -= dc; if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) sum -= sample; dsp->sc++; } while (dsp->sc < bg); // n < dsp->sps } mid = bg + (dsp->sps-1)/2.0; bg += dsp->sps; do { if (dsp->buffered > 0) dsp->buffered -= 1; else if (f32buf_sample(dsp, inv) == EOF) return EOF; sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M]; if (spike && fabs(sample - avg) > ths) { avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M] +dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]); sample = avg + scale*(sample - avg); // spikes } sample -= dc; if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) sum += sample; dsp->sc++; } while (dsp->sc < bg); // n < dsp->sps if (sum >= 0) *bit = 1; else *bit = 0; return 0; } int read_softbit(dsp_t *dsp, hsbit_t *shb, int inv, int ofs, int pos, float l, int spike) { // symlen==2: manchester2 10->0,01->1: 2.bit float sample; float avg; float ths = 0.5, scale = 0.27; double sum = 0.0; double mid; //double l = 1.0; double bg = pos*dsp->symlen*dsp->sps; double dc = 0.0; ui8_t bit = 0; if (dsp->opt_dc && dsp->opt_iq < 2) dc = dsp->dc; if (pos == 0) { bg = 0; dsp->sc = 0; } if (dsp->symlen == 2) { mid = bg + (dsp->sps-1)/2.0; bg += dsp->sps; do { if (dsp->buffered > 0) dsp->buffered -= 1; else if (f32buf_sample(dsp, inv) == EOF) return EOF; sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M]; if (spike && fabs(sample - avg) > ths) { avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M] +dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]); sample = avg + scale*(sample - avg); // spikes } sample -= dc; if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) sum -= sample; dsp->sc++; } while (dsp->sc < bg); // n < dsp->sps } mid = bg + (dsp->sps-1)/2.0; bg += dsp->sps; do { if (dsp->buffered > 0) dsp->buffered -= 1; else if (f32buf_sample(dsp, inv) == EOF) return EOF; sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M]; if (spike && fabs(sample - avg) > ths) { avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M] +dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]); sample = avg + scale*(sample - avg); // spikes } sample -= dc; if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) sum += sample; dsp->sc++; } while (dsp->sc < bg); // n < dsp->sps if (sum >= 0) bit = 1; else bit = 0; shb->hb = bit; shb->sb = (float)sum; return 0; } int read_softbit2p(dsp_t *dsp, hsbit_t *shb, int inv, int ofs, int pos, float l, int spike, hsbit_t *shb1) { // symlen==2: manchester2 10->0,01->1: 2.bit float sample, sample1; float avg; float ths = 0.5, scale = 0.27; double sum = 0.0, sum1 = 0.0; double mid; //double l = 1.0; double bg = pos*dsp->symlen*dsp->sps; double dc = 0.0; ui8_t bit = 0, bit1 = 0; if (dsp->opt_dc && dsp->opt_iq < 2) dc = dsp->dc; if (pos == 0) { bg = 0; dsp->sc = 0; } if (dsp->symlen == 2) { mid = bg + (dsp->sps-1)/2.0; bg += dsp->sps; do { if (dsp->buffered > 0) dsp->buffered -= 1; else if (f32buf_sample(dsp, inv) == EOF) return EOF; sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M]; sample1 = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs-1 + dsp->M) % dsp->M]; if (spike && fabs(sample - avg) > ths) { avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M] +dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]); sample = avg + scale*(sample - avg); // spikes } sample -= dc; sample1 -= dc; if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) { sum -= sample; sum1 -= sample1; } dsp->sc++; } while (dsp->sc < bg); // n < dsp->sps } mid = bg + (dsp->sps-1)/2.0; bg += dsp->sps; do { if (dsp->buffered > 0) dsp->buffered -= 1; else if (f32buf_sample(dsp, inv) == EOF) return EOF; sample = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs + dsp->M) % dsp->M]; sample1 = dsp->bufs[(dsp->sample_out-dsp->buffered + ofs-1 + dsp->M) % dsp->M]; if (spike && fabs(sample - avg) > ths) { avg = 0.5*(dsp->bufs[(dsp->sample_out-dsp->buffered-1 + ofs + dsp->M) % dsp->M] +dsp->bufs[(dsp->sample_out-dsp->buffered+1 + ofs + dsp->M) % dsp->M]); sample = avg + scale*(sample - avg); // spikes } sample -= dc; sample1 -= dc; if (l < 0 || (mid-l < dsp->sc && dsp->sc < mid+l)) { sum += sample; sum1 += sample1; } dsp->sc++; } while (dsp->sc < bg); // n < dsp->sps if (sum >= 0) bit = 1; else bit = 0; shb->hb = bit; shb->sb = (float)sum; if (sum1 >= 0) bit1 = 1; else bit1 = 0; shb1->hb = bit1; shb1->sb = (float)sum1; return 0; } /* -------------------------------------------------------------------------- */ #define IF_SAMPLE_RATE 48000 #define IF_SAMPLE_RATE_MIN 32000 #define IF_TRANSITION_BW (4e3) // 4kHz transition width #define FM_TRANSITION_BW (2e3) // 2kHz transition width #define SQRT2 1.4142135624 // sqrt(2) // sigma = sqrt(log(2)) / (2*PI*BT): //#define SIGMA 0.2650103635 // BT=0.5: 0.2650103635 , BT=0.3: 0.4416839392 // Gaussian FM-pulse static double Q(double x) { return 0.5 - 0.5*erf(x/SQRT2); } static double pulse(double t, double sigma) { return Q((t-0.5)/sigma) - Q((t+0.5)/sigma); } static double norm2_vect(float *vect, int n) { int i; double x, y = 0.0; for (i = 0; i < n; i++) { x = vect[i]; y += x*x; } return y; } int init_buffers(dsp_t *dsp) { int i, pos; float b0, b1, b2, b, t; float normMatch; double sigma = sqrt(log(2)) / (2*M_PI*dsp->BT); int p2 = 1; int K, L, M; int n, k; float *m = NULL; if (dsp->opt_iq == 5) { int IF_sr = IF_SAMPLE_RATE; // designated IF sample rate int decM = 1; // decimate M:1 int sr_base = dsp->sr; float f_lp; // dec_lowpass: lowpass_bandwidth/2 float t_bw; // dec_lowpass: transition_bandwidth int taps; // dec_lowpass: taps if (dsp->opt_IFmin) IF_sr = IF_SAMPLE_RATE_MIN; if (IF_sr > sr_base) IF_sr = sr_base; if (IF_sr < sr_base) { while (sr_base % IF_sr) IF_sr += 1; decM = sr_base / IF_sr; } f_lp = (IF_sr+20e3)/(4.0*sr_base); t_bw = (IF_sr-20e3)/*/2.0*/; if (dsp->opt_IFmin) { t_bw = (IF_sr-12e3); } if (t_bw < 0) t_bw = 10e3; t_bw /= sr_base; taps = 4.0/t_bw; if (taps%2==0) taps++; taps = lowpass_init(f_lp, taps, &ws_dec); // decimate lowpass if (taps < 0) return -1; dsp->dectaps = (ui32_t)taps; dsp->sr_base = sr_base; dsp->sr = IF_sr; // sr_base/decM dsp->sps /= (float)decM; dsp->_spb /= (float)decM; dsp->decM = decM; fprintf(stderr, "IF: %d\n", IF_sr); fprintf(stderr, "dec: %d\n", decM); } if (dsp->opt_iq == 5) { // look up table, exp-rotation int W = 2*8; // 16 Hz window int d = 1; // 1..W , groesster Teiler d <= W von sr_base int freq = (int)( dsp->xlt_fq * (double)dsp->sr_base + 0.5); int freq0 = freq; // init double f0 = freq0 / (double)dsp->sr_base; // init for (d = W; d > 0; d--) { // groesster Teiler d <= W von sr if (dsp->sr_base % d == 0) break; } if (d == 0) d = 1; // d >= 1 ? for (k = 0; k < W/2; k++) { if ((freq+k) % d == 0) { freq0 = freq + k; break; } if ((freq-k) % d == 0) { freq0 = freq - k; break; } } dsp->lut_len = dsp->sr_base / d; f0 = freq0 / (double)dsp->sr_base; dsp->ex = calloc(dsp->lut_len+1, sizeof(float complex)); if (dsp->ex == NULL) return -1; for (n = 0; n < dsp->lut_len; n++) { t = f0*(double)n; dsp->ex[n] = cexp(t*2*M_PI*I); } dsp->decXbuffer = calloc( dsp->dectaps+1, sizeof(float complex)); if (dsp->decXbuffer == NULL) return -1; dsp->decMbuf = calloc( dsp->decM+1, sizeof(float complex)); if (dsp->decMbuf == NULL) return -1; } if (dsp->opt_iq && dsp->opt_lp) { float f_lp; // lowpass_bw int taps; // lowpass taps: 4*sr/transition_bw // IF lowpass f_lp = 24e3; // default if (dsp->lpIQ_bw) f_lp = dsp->lpIQ_bw/(float)dsp->sr/2.0; taps = 4*dsp->sr/IF_TRANSITION_BW; if (taps%2==0) taps++; taps = lowpass_init(1.5*f_lp, taps, &dsp->ws_lpIQ0); if (taps < 0) return -1; taps = lowpass_init(f_lp, taps, &dsp->ws_lpIQ1); if (taps < 0) return -1; dsp->lpIQ_fbw = f_lp; dsp->lpIQtaps = taps; dsp->lpIQ_buf = calloc( dsp->lpIQtaps+3, sizeof(float complex)); if (dsp->lpIQ_buf == NULL) return -1; dsp->ws_lpIQ = dsp->ws_lpIQ1; // dc-offset: if not centered, (acquisition) filter bw = lpIQ_bw + 4kHz // coarse acquisition: if (dsp->opt_dc) { dsp->locked = 0; dsp->ws_lpIQ = dsp->ws_lpIQ0; //taps = lowpass_update(1.5*dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ); if (taps < 0) return -1; } // locked: //taps = lowpass_update(dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ); if (taps < 0) return -1; // FM lowpass f_lp = 10e3; // default if (dsp->lpFM_bw > 0) f_lp = dsp->lpFM_bw/(float)dsp->sr; taps = 4*dsp->sr/FM_TRANSITION_BW; if (taps%2==0) taps++; taps = lowpass_init(f_lp, taps, &dsp->ws_lpFM); if (taps < 0) return -1; dsp->lpFMtaps = taps; dsp->lpFM_buf = calloc( dsp->lpFMtaps+3, sizeof(float complex)); if (dsp->lpFM_buf == NULL) return -1; } memset(&IQdc, 0, sizeof(IQdc)); IQdc.maxlim = dsp->sr; IQdc.maxcnt = IQdc.maxlim/32; // 32,16,8,4,2,1 if (dsp->decM > 1) { IQdc.maxlim *= dsp->decM; IQdc.maxcnt *= dsp->decM; } L = dsp->hdrlen * dsp->sps + 0.5; M = 3*L; //if (dsp->sps < 6) M = 6*L; dsp->delay = L/16; dsp->sample_in = 0; p2 = 1; while (p2 < M) p2 <<= 1; while (p2 < 0x2000) p2 <<= 1; // or 0x4000, if sample not too short M = p2; dsp->DFT.N = p2; dsp->DFT.LOG2N = log(dsp->DFT.N)/log(2)+0.1; // 32bit cpu ... intermediate floating-point precision //while ((1 << dsp->DFT.LOG2N) < dsp->DFT.N) dsp->DFT.LOG2N++; // better N = (1 << LOG2N) ... K = M-L - dsp->delay; // L+K < M dsp->DFT.sr = dsp->sr; dsp->K = K; dsp->L = L; dsp->M = M; dsp->Nvar = L; // wenn Nvar fuer xnorm, dann Nvar=rshd.L dsp->bufs = (float *)calloc( M+1, sizeof(float)); if (dsp->bufs == NULL) return -100; dsp->match = (float *)calloc( L+1, sizeof(float)); if (dsp->match == NULL) return -100; dsp->xs = (float *)calloc( M+1, sizeof(float)); if (dsp->xs == NULL) return -100; dsp->qs = (float *)calloc( M+1, sizeof(float)); if (dsp->qs == NULL) return -100; dsp->rawbits = (char *)calloc( 2*dsp->hdrlen+1, sizeof(char)); if (dsp->rawbits == NULL) return -100; for (i = 0; i < M; i++) dsp->bufs[i] = 0.0; for (i = 0; i < L; i++) { pos = i/dsp->sps; t = (i - pos*dsp->sps)/dsp->sps - 0.5; b1 = ((dsp->hdr[pos] & 0x1) - 0.5)*2.0; b = b1*pulse(t, sigma); if (pos > 0) { b0 = ((dsp->hdr[pos-1] & 0x1) - 0.5)*2.0; b += b0*pulse(t+1, sigma); } if (pos < dsp->hdrlen-1) { b2 = ((dsp->hdr[pos+1] & 0x1) - 0.5)*2.0; b += b2*pulse(t-1, sigma); } dsp->match[i] = b; } normMatch = sqrt( norm2_vect(dsp->match, L) ); for (i = 0; i < L; i++) { dsp->match[i] /= normMatch; } dsp->DFT.xn = calloc(dsp->DFT.N+1, sizeof(float)); if (dsp->DFT.xn == NULL) return -1; dsp->DFT.Fm = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.Fm == NULL) return -1; dsp->DFT.X = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.X == NULL) return -1; dsp->DFT.Z = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.Z == NULL) return -1; dsp->DFT.cx = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.cx == NULL) return -1; dsp->DFT.ew = calloc(dsp->DFT.LOG2N+1, sizeof(float complex)); if (dsp->DFT.ew == NULL) return -1; // FFT window // a) N2 = N // b) N2 < N (interpolation) dsp->DFT.win = calloc(dsp->DFT.N+1, sizeof(float complex)); if (dsp->DFT.win == NULL) return -1; // float real dsp->DFT.N2 = dsp->DFT.N; //dsp->DFT.N2 = dsp->DFT.N/2 - 1; // N=2^log2N dft_window(&dsp->DFT, 1); for (n = 0; n < dsp->DFT.LOG2N; n++) { k = 1 << n; dsp->DFT.ew[n] = cexp(-I*M_PI/(float)k); } m = calloc(dsp->DFT.N+1, sizeof(float)); if (m == NULL) return -1; for (i = 0; i < L; i++) m[L-1 - i] = dsp->match[i]; // t = L-1 while (i < dsp->DFT.N) m[i++] = 0.0; rdft(&dsp->DFT, m, dsp->DFT.Fm); free(m); m = NULL; if (dsp->opt_iq) { if (dsp->nch < 2) return -1; dsp->N_IQBUF = dsp->DFT.N; dsp->rot_iqbuf = calloc(dsp->N_IQBUF+1, sizeof(float complex)); if (dsp->rot_iqbuf == NULL) return -1; } dsp->fm_buffer = (float *)calloc( M+1, sizeof(float)); if (dsp->fm_buffer == NULL) return -1; // dsp->bufs[] return K; } int free_buffers(dsp_t *dsp) { if (dsp->match) { free(dsp->match); dsp->match = NULL; } if (dsp->bufs) { free(dsp->bufs); dsp->bufs = NULL; } if (dsp->xs) { free(dsp->xs); dsp->xs = NULL; } if (dsp->qs) { free(dsp->qs); dsp->qs = NULL; } if (dsp->rawbits) { free(dsp->rawbits); dsp->rawbits = NULL; } if (dsp->DFT.xn) { free(dsp->DFT.xn); dsp->DFT.xn = NULL; } if (dsp->DFT.ew) { free(dsp->DFT.ew); dsp->DFT.ew = NULL; } if (dsp->DFT.Fm) { free(dsp->DFT.Fm); dsp->DFT.Fm = NULL; } if (dsp->DFT.X) { free(dsp->DFT.X); dsp->DFT.X = NULL; } if (dsp->DFT.Z) { free(dsp->DFT.Z); dsp->DFT.Z = NULL; } if (dsp->DFT.cx) { free(dsp->DFT.cx); dsp->DFT.cx = NULL; } if (dsp->DFT.win) { free(dsp->DFT.win); dsp->DFT.win = NULL; } if (dsp->opt_iq) { if (dsp->rot_iqbuf) { free(dsp->rot_iqbuf); dsp->rot_iqbuf = NULL; } } // decimate if (dsp->opt_iq == 5) { if (dsp->decXbuffer) { free(dsp->decXbuffer); dsp->decXbuffer = NULL; } if (dsp->decMbuf) { free(dsp->decMbuf); dsp->decMbuf = NULL; } if (dsp->ex) { free(dsp->ex); dsp->ex = NULL; } if (ws_dec) { free(ws_dec); ws_dec = NULL; } } // IF lowpass if (dsp->opt_iq && dsp->opt_lp) { if (dsp->ws_lpIQ0) { free(dsp->ws_lpIQ0); dsp->ws_lpIQ0 = NULL; } if (dsp->ws_lpIQ1) { free(dsp->ws_lpIQ1); dsp->ws_lpIQ1 = NULL; } if (dsp->lpIQ_buf) { free(dsp->lpIQ_buf); dsp->lpIQ_buf = NULL; } if (dsp->ws_lpFM) { free(dsp->ws_lpFM); dsp->ws_lpFM = NULL; } if (dsp->lpFM_buf) { free(dsp->lpFM_buf); dsp->lpFM_buf = NULL; } } if (dsp->fm_buffer) { free(dsp->fm_buffer); dsp->fm_buffer = NULL; } return 0; } /* ------------------------------------------------------------------------------------ */ int find_header(dsp_t *dsp, float thres, int hdmax, int bitofs, int opt_dc) { ui32_t k = 0; ui32_t mvpos0 = 0; int mp; int header_found = 0; int herrs; while ( f32buf_sample(dsp, 0) != EOF ) { k += 1; if (k >= dsp->K-4) { mvpos0 = dsp->mv_pos; mp = getCorrDFT(dsp); // correlation score -> dsp->mv //if (option_auto == 0 && dsp->mv < 0) mv = 0; k = 0; } else { dsp->mv = 0.0; continue; } if (dsp->mv > thres || dsp->mv < -thres) { if (dsp->opt_dc) { // Problem: FM-gain if (dsp->opt_iq < 2) dsp->Df += dsp->dDf*0.4; else { double ofs = fabs(dsp->dDf); // (iq-decode controls FM-gain) if (ofs > 200.0) { dsp->Df += dsp->dDf * 2/3.0; } if (ofs > 1000.0) { //dsp->opt_lp if (dsp->locked) { dsp->locked = 0; dsp->ws_lpIQ = dsp->ws_lpIQ0; // alt: lowpass_update(1.5*dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ); } } else { if (dsp->locked == 0) { dsp->locked = 1; dsp->ws_lpIQ = dsp->ws_lpIQ1; // alt: lowpass_update(dsp->lpIQ_fbw, dsp->lpIQtaps, dsp->ws_lpIQ); } } } } if (dsp->mv_pos > mvpos0) { header_found = 0; herrs = headcmp(dsp, opt_dc); if (herrs <= hdmax) header_found = 1; // max bitfehler in header if (header_found) return 1; } } } return EOF; } /* ------------------------------------------------------------------------------------ */ #else // external FSK demod: read float32 soft symbols float read_wav_header(pcm_t *pcm, FILE *fp) {} int f32buf_sample(dsp_t *dsp, int inv) {} int read_slbit(dsp_t *dsp, int *bit, int inv, int ofs, int pos, float l, int spike) {} int read_softbit(dsp_t *dsp, hsbit_t *shb, int inv, int ofs, int pos, float l, int spike) {} int read_softbit2p(dsp_t *dsp, hsbit_t *shb, int inv, int ofs, int pos, float l, int spike, hsbit_t *shb1) {} int init_buffers(dsp_t *dsp) {} int free_buffers(dsp_t *dsp) {} int find_header(dsp_t *dsp, float thres, int hdmax, int bitofs, int opt_dc) {} #endif static float cmp_hdb(hdb_t *hdb) { // bit-errors? int i, j; int headlen = hdb->len; int berrs1 = 0, berrs2 = 0; i = 0; j = hdb->bufpos; while (i < headlen) { if (j < 0) j = headlen-1; if (hdb->buf[j] != hdb->hdr[headlen-1-i]) berrs1 += 1; j--; i++; } i = 0; j = hdb->bufpos; while (i < headlen) { if (j < 0) j = headlen-1; if ((hdb->buf[j]^0x01) != hdb->hdr[headlen-1-i]) berrs2 += 1; j--; i++; } if (berrs2 < berrs1) return (-headlen+berrs2)/(float)headlen; else return ( headlen-berrs1)/(float)headlen; return 0; } int find_binhead(FILE *fp, hdb_t *hdb, float *score) { int bit; int headlen = hdb->len; float mv; //*score = 0.0; while ( (bit = fgetc(fp)) != EOF ) { bit &= 1; hdb->bufpos = (hdb->bufpos+1) % headlen; hdb->buf[hdb->bufpos] = 0x30 | bit; // Ascii mv = cmp_hdb(hdb); if ( fabs(mv) > hdb->thb ) { *score = mv; return 1; } } return EOF; } static float corr_softhdb(hdb_t *hdb) { // max score in window probably not needed int i, j; int headlen = hdb->len; double sum = 0.0; double normx = 0.0, normy = 0.0; float x, y; i = 0; j = hdb->bufpos + 1; while (i < headlen) { if (j >= headlen) j = 0; x = hdb->sbuf[j]; y = 2.0*(hdb->hdr[i]&0x1) - 1.0; sum += y * hdb->sbuf[j]; normx += x*x; normy += y*y; j++; i++; } sum /= sqrt(normx*normy); return sum; } int f32soft_read(FILE *fp, float *s) { unsigned int word = 0; short *b = (short*)&word; float *f = (float*)&word; int bps = 32; if (fread( &word, bps/8, 1, fp) != 1) return EOF; if (bps == 32) { *s = *f; } else { if (bps == 8) { *b -= 128; } *s = *b/128.0; if (bps == 16) { *s /= 256.0; } } return 0; } int find_softbinhead(FILE *fp, hdb_t *hdb, float *score) { int headlen = hdb->len; float sbit; float mv; //*score = 0.0; while ( f32soft_read(fp, &sbit) != EOF ) { hdb->bufpos = (hdb->bufpos+1) % headlen; hdb->sbuf[hdb->bufpos] = sbit; mv = corr_softhdb(hdb); if ( fabs(mv) > hdb->ths ) { *score = mv; return 1; } } return EOF; }