/* * radiosonde iMet-1-AB (GPS: Trimble/ublox) * author: zilog80 * usage: * gcc imet1ab.c -lm -o imet1ab * ./imet1ab [options] audio.wav * options: * -r, --raw * -i, --invert * -1 (trimble: TOW/s) * -2 (ublox: TOW/ms) * * * AFSK 1200Hz/2400Hz, noncoherent correlation: * option -b * gcc imet1ab_cpafsk.c -lm -o imet1ab_cpfsk * ./imet1ab_cpfsk -b -v imet1ab.wav * * waveform output: * gcc -DMULTI imet1ab_cpafsk.c -lm -o imet1ab_multi * ./imet1ab_multi -b imet1ab.wav > multi_imet.wav * wenn leise und 8bit, z.B.: * ./imet1ab_multi -b -g 100 imet1ab.wav > multi_imet.wav * */ #include #include #include #include #ifdef CYGWIN #include // cygwin: _setmode() #include #endif typedef unsigned char ui8_t; typedef struct { int frnr; char id1[9]; char id2[9]; int week; double gpssec; //int jahr; int monat; int tag; int wday; int std; int min; int sek; int ms; double lat; double lon; double alt; double vH; double vD; double vV; double vx; double vy; double vD2; } gpx_t; gpx_t gpx; int option_verbose = 0, // ausfuehrliche Anzeige option_raw = 0, // rohe Frames option_color = 0, // Farbe option_inv = 0, // invertiert Signal option_b = 0, option_gps = 0, wavloaded = 0; /* -------------------------------------------------------------------------- */ #define BAUD_RATE 2400 // iMet: AFSK Baudrate 2400 /* 1200 Hz: out-in 2400 Hz: lang -> Baudrate 4800 Hz: kurz (2x) */ unsigned int sample_rate, channels, bytes_sec, bits_sample, blockalign, datblocksize, datsize8; float samples_per_bit = 0; int findstr(char *buff, char *str, int pos) { int i; for (i = 0; i < 4; i++) { if (buff[(pos+i)%4] != str[i]) break; } return i; } int read_wav_header(FILE *fp) { char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "RIFF", 4)) return -1; if (fread(dat, 1, 4, fp) < 4) return -1; datsize8 = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; // bits_sample if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); // channels if (fread(dat, 1, 2, fp) < 2) return -1; channels = dat[0] + (dat[1] << 8); // sample_rate if (fread(dat, 1, 4, fp) < 4) return -1; sample_rate = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); //memcpy(&sr, dat, 4); // bytes/sec if (fread(dat, 1, 4, fp) < 4) return -1; bytes_sec = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); // block align if (fread(dat, 1, 2, fp) < 2) return -1; blockalign = dat[0] | (dat[1] << 8); // bits/sample if (fread(dat, 1, 2, fp) < 2) return -1; bits_sample = dat[0] + (dat[1] << 8); if ((bits_sample != 8) && (bits_sample != 16)) return -2; // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; datblocksize = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); fprintf(stderr, "sample_rate: %d\n", sample_rate); fprintf(stderr, "bits : %d\n", bits_sample); fprintf(stderr, "channels : %d\n", channels); if ((bits_sample != 8) && (bits_sample != 16)) return -1; samples_per_bit = sample_rate/(float)BAUD_RATE; fprintf(stderr, "samples/bit: %.2f\n", samples_per_bit); return 0; } int read_wavheader(FILE *fp, unsigned char chIn, unsigned char chOut, FILE *fout) { unsigned int size = 0; char txt[4+1] = "\0\0\0\0"; unsigned char dat[4]; int byte, p=0; fseek(fp, 0, SEEK_SET); if (fread(txt, 1, 4, fp) < 4) return -1; fwrite(txt, 1, 4, fout); if (strncmp(txt, "RIFF", 4)) return -1; if (fread(dat, 1, 4, fp) < 4) return -1; size = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); size = ((size+8-44)*chOut)/chIn + 44-8; for (byte = 0; byte < 4; byte++) { dat[byte] = size & 0xFF; size >>= 8; } fwrite(dat, 1, 4, fout); // pos_WAVE = 8L if (fread(txt, 1, 4, fp) < 4) return -1; fwrite(txt, 1, 4, fout); if (strncmp(txt, "WAVE", 4)) return -1; // pos_fmt = 12L for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; fprintf(fout, "%c", byte & 0xFF); txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "fmt ", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; fwrite(dat, 1, 4, fout); if (fread(dat, 1, 2, fp) < 2) return -1; fwrite(dat, 1, 2, fout); // channels if (fread(dat, 1, 2, fp) < 2) return -1; dat[0] = chOut; fwrite(dat, 1, 2, fout); // sample_rate if (fread(dat, 1, 4, fp) < 4) return -1; fwrite(dat, 1, 4, fout); // bytes/sec if (fread(dat, 1, 4, fp) < 4) return -1; size = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); size = (size*chOut)/chIn; for (byte = 0; byte < 4; byte++) { dat[byte] = size & 0xFF; size >>= 8; } fwrite(dat, 1, 4, fout); // block align if (fread(dat, 1, 2, fp) < 2) return -1; size = dat[0] | (dat[1] << 8); size = (size*chOut)/chIn; for (byte = 0; byte < 2; byte++) { dat[byte] = size & 0xFF; size >>= 8; } fwrite(dat, 1, 2, fout); // bits/sample if (fread(dat, 1, 2, fp) < 2) return -1; fwrite(dat, 1, 2, fout); //bits_sample = dat[0] + (dat[1] << 8); //if ((bits_sample != 8) && (bits_sample != 16)) return -2; // pos_dat = 36L + info for ( ; ; ) { if ( (byte=fgetc(fp)) == EOF ) return -1; fprintf(fout, "%c", byte & 0xFF); txt[p % 4] = byte; p++; if (p==4) p=0; if (findstr(txt, "data", p) == 4) break; } if (fread(dat, 1, 4, fp) < 4) return -1; size = dat[0] | (dat[1] << 8) | (dat[2] << 16) | (dat[3] << 24); size = (size*chOut)/chIn; for (byte = 0; byte < 4; byte++) { dat[byte] = size & 0xFF; size >>= 8; } fwrite(dat, 1, 4, fout); return 0; } int f32read_sample(FILE *fp, double *s) { // channels == 1 int i; short b = 0; for (i = 0; i < channels; i++) { if (fread( &b, bits_sample/8, 1, fp) != 1) return EOF; if (bits_sample == 8) { b -= 128; } if (i == 0) { // i = 0: links bzw. mono *s = b/128.0; if (bits_sample == 16) { *s /= 256.0; } } } return 0; } int f32write_mults(FILE *fp, double *w, int ch) { int i; int b; double x; for (i = 0; i < ch; i++) { x = 128.0 * w[i]; if (bits_sample == 8) { x += 128.0; } if (bits_sample == 16) { x *= 256.0; } b = (int)x; // -> short // 16 bit (short) -> (int) fwrite( &b, bits_sample/8, 1, fp); // + 0000 .. 7FFF -> 0000 0000 .. 0000 7FFF // - 8000 .. FFFF -> FFFF 8000 .. FFFF FFFF } return 0; } #define EOF_INT 0x1000000 int read_signed_sample(FILE *fp) { // int = i32_t int byte, i, ret; // EOF -> 0x1000000 for (i = 0; i < channels; i++) { // i = 0: links bzw. mono byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == 0) ret = byte; if (bits_sample == 16) { byte = fgetc(fp); if (byte == EOF) return EOF_INT; if (i == 0) ret += byte << 8; } } if (bits_sample == 8) return ret-128; if (bits_sample == 16) return (short)ret; return ret; } int par=1, // init_sample > 0 par_alt=1; unsigned long sample_count = 0; int read_afsk_bits(FILE *fp, int *len) { int n, sample; float l; n = 0; do{ // High // par>0 sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; if (option_inv) sample = -sample; sample_count++; par_alt = par; par = (sample >= 0) ? 1 : -1; n++; } while (par*par_alt > 0); do{ // Low // par<0 sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; if (option_inv) sample = -sample; sample_count++; par_alt = par; par = (sample >= 0) ? 1 : -1; n++; } while (par*par_alt > 0); // par>0 l = (float)n / (samples_per_bit/2.0); *len = (int)(l+0.5); // round(l) return 0; } int read_afsk_bits1(FILE *fp, int *len) { int n; static int sample; float l; while (sample >= 0) { sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; if (option_inv) sample = -sample; sample_count++; } n = 0; while (sample < 0) { n++; par_alt = par; par = (sample >= 0) ? 1 : -1; sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; if (option_inv) sample = -sample; sample_count++; } while (sample >= 0) { n++; par_alt = par; par = (sample >= 0) ? 1 : -1; sample = read_signed_sample(fp); if (sample == EOF_INT) return EOF; if (option_inv) sample = -sample; sample_count++; } l = (float)n / (samples_per_bit/2.0); *len = (int)(l+0.5); // round(l) return 0; } /* -------------------------------------------------------------------------- */ /* Beginn/Header: 69 69 69 69 69 10 Ende: 96 96 96 96 96 96 96 96 96 */ #define pos_Start 0x05 // 2 byte #define pos_RecordNo 0x08 // 2 byte #define pos_SondeID1 0x12 // 5 byte #define pos_SondeID2 0x2C // 5 byte #define pos_GPSTOW 0x8A // 4 byte #define pos_GPSlat 0x8E // 4 byte #define pos_GPSlon 0x92 // 4 byte #define pos_GPSalt 0x96 // 4 byte //Velocity East-North-Up (ENU) #define pos_GPSvO 0x84 // 2 byte #define pos_GPSvN 0x86 // 2 byte #define pos_GPSvV 0x88 // 2 byte #define pos_xcSum 0xC2 // 1 byte: xsumDLE(frame+pos_Start, 189) // 189 = pos_xcSum-pos_Start #define FRAMELEN 204 ui8_t frame[FRAMELEN+6]; double B60B60 = 0xB60B60; // 2^32/360 = 0xB60B60.xxx char weekday[7][3] = { "So", "Mo", "Di", "Mi", "Do", "Fr", "Sa"}; typedef struct { int cnt; int tow; } gpstow_t; gpstow_t tow0, tow1; int gpsTOW(int gpstime) { int day; tow0 = tow1; tow1.tow = gpstime; tow1.cnt = gpx.frnr; if (!option_gps) { if (tow1.cnt-tow0.cnt == 1) { if (tow1.tow-tow0.tow > 998 && tow1.tow-tow0.tow < 1002) option_gps = 2; if (tow1.tow-tow0.tow > 0 && tow1.tow-tow0.tow < 2 ) option_gps = 1; } } gpx.gpssec = gpstime; if (option_gps == 2) { gpx.ms = gpstime % 1000; gpx.gpssec /= 1000.0; gpstime /= 1000; } if (gpx.gpssec<0 || gpx.gpssec>7*24*60*60) return 1; // 1 Woche = 604800 sek day = gpstime / (24 * 3600); gpstime %= (24*3600); if ((day < 0) || (day > 6)) { //gpx.wday = 0; return 1; } gpx.wday = day; gpx.std = gpstime / 3600; gpx.min = (gpstime % 3600) / 60; gpx.sek = gpstime % 60; return 0; } int gpsLat(int lat) { gpx.lat = lat / B60B60; if (gpx.lat < -90 || gpx.lat > 90) return 1; return 0; } int gpsLon(int lon) { gpx.lon = lon / B60B60; if (gpx.lon < -180 || gpx.lon > 180) return 1; return 0; } int gpsAlt(int alt) { gpx.alt = alt / 1000.0; if (gpx.alt < -200 || gpx.alt > 50000) return 1; return 0; } int get_GPStow() { int i, tow; int err = 0; tow = 0; for (i = 0; i < 4; i++) { tow |= frame[pos_GPSTOW+i] << (8*i); } err = gpsTOW(tow); return err; } int get_GPSpos() { int i, lat, lon, alt; int err = 0; lat = lon = alt = 0; for (i = 0; i < 4; i++) { lat |= frame[pos_GPSlat+i] << (8*i); lon |= frame[pos_GPSlon+i] << (8*i); alt |= frame[pos_GPSalt+i] << (8*i); } err = 0; err |= gpsLat(lat) << 1; err |= gpsLon(lon) << 2; err |= gpsAlt(alt) << 3; return err; } int get_GPSvel() { int i; unsigned byte; ui8_t gpsVel_bytes[2]; short vel16; double vx, vy, dir, alpha; const double ms2kn100 = 2e2; // m/s -> knots: 1 m/s = 3.6/1.852 kn = 1.94 kn for (i = 0; i < 2; i++) { byte = frame[pos_GPSvO + i]; if (byte > 0xFF) return -1; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8; vx = vel16 / ms2kn100; // ost for (i = 0; i < 2; i++) { byte = frame[pos_GPSvN + i]; if (byte > 0xFF) return -1; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8; vy= vel16 / ms2kn100; // nord gpx.vx = vx; gpx.vy = vy; gpx.vH = sqrt(vx*vx+vy*vy); ///* alpha = atan2(vy, vx)*180/M_PI; // ComplexPlane (von x-Achse nach links) - GeoMeteo (von y-Achse nach rechts) dir = 90-alpha; // z=x+iy= -> i*conj(z)=y+ix=re(i(pi/2-t)), Achsen und Drehsinn vertauscht if (dir < 0) dir += 360; // atan2(y,x)=atan(y/x)=pi/2-atan(x/y) , atan(1/t) = pi/2 - atan(t) gpx.vD2 = dir; //*/ dir = atan2(vx, vy) * 180 / M_PI; if (dir < 0) dir += 360; gpx.vD = dir; for (i = 0; i < 2; i++) { byte = frame[pos_GPSvV + i]; if (byte > 0xFF) return -1; gpsVel_bytes[i] = byte; } vel16 = gpsVel_bytes[0] | gpsVel_bytes[1] << 8; gpx.vV = vel16 / ms2kn100; return 0; } int get_RecordNo() { int i; unsigned byte; ui8_t frnr_bytes[2]; int frnr; for (i = 0; i < 2; i++) { byte = frame[pos_RecordNo + i]; frnr_bytes[i] = byte; } frnr = frnr_bytes[0] + (frnr_bytes[1] << 8); gpx.frnr = frnr; return 0; } int get_SondeID() { int i; unsigned byte; ui8_t sondeid_bytes[8]; // 5 bis 6 ascii + '\0' int IDlen = 6+1; // < 9 int err = 0; for (i = 0; i < IDlen; i++) { byte = frame[pos_SondeID1 + i]; if (byte == 0) IDlen = i+1; else if (byte < 0x20 || byte > 0x7E) err |= 0x1; sondeid_bytes[i] = byte; } for (i = 0; i < IDlen; i++) { gpx.id1[i] = sondeid_bytes[i]; } IDlen = 6+1; for (i = 0; i < IDlen; i++) { byte = frame[pos_SondeID2 + i]; if (byte == 0) IDlen = i+1; else if (byte < 0x20 || byte > 0x7E) err |= 0x2; sondeid_bytes[i] = byte; } for (i = 0; i < IDlen; i++) { gpx.id2[i] = sondeid_bytes[i]; } return err; } /* -------------------------------------------------------------------------- */ // Frame: , // =0x10, =0x03; =0xb9 // (.. 69) 10 b9 01 .. .. 10 03 cs (96 ..) // 8bit-xor-checksum: // xsumDLE(frame+pos_Start, pos_xcSum-pos_Start) int xsumDLE(ui8_t bytes[], int len) { int i, xsum = 0; for (i = 0; i < len; i++) { // TSIP-Protokoll: =0x10 // innnerhalb , 0x10 doppelt, und 0x10^0x10=0x00 if (bytes[i] != 0x10) xsum ^= bytes[i]; // ausser zu Beginn/Ende } return xsum & 0xFF; } /* -------------------------------------------------------------------------- */ int bits2byte(char *bits) { int i, d = 1, byte = 0; for (i = 0; i < 8; i++) { if (bits[i] == 1) byte += d; else if (bits[i] == 0) byte += 0; d <<= 1; } return byte & 0xFF; } #define ANSI_COLOR_CYAN "\x1b[36m" #define ANSI_COLOR_RESET "\x1b[0m" void print_frame(int len) { FILE *fpo; int i; int err1, err2, err3; if (option_raw) { for (i = 0; i < len; i++) { if (option_color) { if (i >= pos_GPSTOW && i < pos_GPSalt+4) fprintf(stdout, ANSI_COLOR_CYAN); else fprintf(stdout, ANSI_COLOR_RESET); } fprintf(stdout, "%02x ", frame[i]); } if (option_verbose) { // pos_xcSum-pos_Start=189 fprintf(stdout, " [%02X # %02X]", frame[pos_xcSum], xsumDLE(frame+pos_Start, pos_xcSum-pos_Start)); } fprintf(stdout, "\n"); } else { fpo = stdout; get_RecordNo(); err1 = get_SondeID(); err2 = get_GPStow(); err3 = get_GPSpos(); if ( !err1 || !err2 || !err3 ) { fprintf(fpo, "[%5d] ", gpx.frnr); if ( err1!=0x3 ) { fprintf(fpo, "(%s) ", err1&0x1?gpx.id2:gpx.id1); } if ( !err2 ) { fprintf(fpo, "%s ",weekday[gpx.wday]); fprintf(fpo, "%02d:%02d:%02d", gpx.std, gpx.min, gpx.sek); if (option_gps == 2) fprintf(fpo, ".%03d", gpx.ms); fprintf(fpo, " "); } if ( !err3 ) { fprintf(fpo, " lat: %.6f ", gpx.lat); fprintf(fpo, " lon: %.6f ", gpx.lon); fprintf(fpo, " alt: %.2f ", gpx.alt); if (option_verbose) { err3 = get_GPSvel(); if (!err3) { if (option_verbose == 2) fprintf(fpo, " (%.1f , %.1f : %.1f°) ", gpx.vx, gpx.vy, gpx.vD2); fprintf(fpo, " vH: %.1f D: %.1f° vV: %.1f ", gpx.vH, gpx.vD, gpx.vV); } } } fprintf(fpo, "\n"); } } } int demod_zeroX(FILE *fp) { int bitl1 = 0, bitl2 = 0, bitl4 = 0, bytepos = 0, bitpos = 0, head = 0, inout = 0, byteval = 0; int i, len; char bitbuf[8]; while (!read_afsk_bits(fp, &len)) { if (len == 0) continue; if (len == 1) { bitl1++; if (bitl1 < 2) continue; } if (len == 2) bitl2++; if (len == 4) { bitl4++; inout = 1; bitl1 = 0; bitl2 = 0; } if (len == 3) { if (bitl1 == 1 && bitpos < 7) { bitl1 = 0; bitbuf[bitpos++] = 1; bitl2++; len = 2; } } if (len > 0 && len < 3) { bitl4 = 0; inout = 0; if (head > 0) { head = 0; if (bytepos > pos_GPSalt+4) print_frame(FRAMELEN); bitpos = 0; bytepos = 0; for (i=0; i 7 || inout) { if (bitpos > 2) { if (bytepos < FRAMELEN) { byteval = bits2byte(bitbuf); if (byteval == 0x10 && frame[bytepos-1] == 0x10) frame[bytepos-1] = 0x10; else { // woher die doppelte 0x10? frame[bytepos] = byteval & 0xFF; // koennte vom TSIP-Protokoll kommen: bytepos++; // , } // wobei =0x10, =0x03. } // wenn 0x10 in data, dann doppelt. } bitpos = 0; } if (bitl4 > 2) { head = 1; } } return 0; } /* * noncoherent demod/correlation * N = sample_rate/2400 f0 = 1/N f1 = 2/N = 2*f0 unbekannte Phase phi des Signals A_k * cos(2*PI*f_k * t + phi) correlator exp(i * 2*PI*f_j * t) sum_{t=0}^{N-1} A_k * cos(2*PI*f_k * t + phi) * exp(i * 2*PI*f_j * t) = A_k*N/2 * exp(-i*phi) , falls j=k (sonst 0, wenn f_j-f_k=m/N, m=+-1,+-2,...) insbesondere bei WFM sind Amplituden A_f0, A_f1 unterschiedlich -> gainBit0, gainBit1, gainBit_ anpassen */ // 1200 Hz #define COSf_(i) cosf[ i % (2*N)] #define SINf_(i) cosf[( i +2*N-N/2) % (2*N)] // 2400 Hz #define COSf0(i) cosf[(2*i) % (2*N)] #define SINf0(i) cosf[(2*i + 2*N-N/2) %( 2*N)] // 4800 Hz #define COSf1(i) cosf[(4*i) % (2*N)] #define SINf1(i) cosf[(4*i + 2*N-N/2) % (2*N)] #define CH_OUT 5 int demod_cpafsk(FILE *fp, double gainOut) { FILE *fout = NULL; int i, N; unsigned int sample, frame_sync, sync, framesample, bitsample; unsigned char chIn = 0, chOut = 0; double out[CH_OUT]; double dc_ofs = 0.0; //0.001; double s, si, *bufs = NULL, *buf0 = NULL, *buf1 = NULL; char sbit, *bufsbit = NULL; double *cosf = NULL; double gainBit0 = 0.5625, // 0.65, gainBit1 = 1.0625, // 0.80, gainBit_ = 1.00; double sum1, sum2, bit0, bit1, bit_; double delay_s, delay_0, delay_1, delay__; char bitbuf[8]; int bytepos = 0, bitpos = 0, byteval = 0, mbit = 0; bytepos = FRAMELEN+1; frame_sync = 0; sync = 0; fout = NULL; #ifdef MULTI fout = stdout; #endif if (sample_rate % 48000) { fprintf(stderr, "wav: sample_rate not 48k or 96k\n"); return -1; } N = sample_rate / BAUD_RATE; // 2400 Hz; chIn = channels; chOut = CH_OUT; if (fout) { i = read_wavheader(fp, chIn, chOut, fout); if (i != 0) { fprintf(stderr, "error: wav header\n"); return -1; } } bufsbit = (char *)calloc( N+1, sizeof(char)); if (bufsbit == NULL) return -1; bufs = (double *)calloc( 2*(N+1), sizeof(double)); if (bufs == NULL) return -1; buf0 = (double *)calloc( 2*(N+1), sizeof(double)); if (buf0 == NULL) return -1; buf1 = (double *)calloc( 2*(N+1), sizeof(double)); if (buf1 == NULL) return -1; cosf = (double *)calloc( 2*(N+1), sizeof(double)); if (cosf == NULL) return -1; for (i = 0; i < 2*N; i++) { cosf[i] = cos(M_PI*i/N); } sample = 0; while (f32read_sample(fp, &s) != EOF) { s += dc_ofs; bufs[sample % (2*N)] = s; sum1 = 0; sum2 = 0; for (i = 0; i < N; i++) { si = bufs[(sample+2*N-i) % (2*N)]; sum1 += si*COSf0(i); sum2 += si*SINf0(i); } bit0 = 4*(sum1*sum1 + sum2*sum2)/(double)(N*N); // A_0*A_0 (betont Flanken) bit0 *= gainBit0; sum1 = 0; sum2 = 0; for (i = 0; i < N; i++) { si = bufs[(sample+2*N-i) % (2*N)]; sum1 += si*COSf1(i); sum2 += si*SINf1(i); } bit1 = 4*(sum1*sum1 + sum2*sum2)/(double)(N*N); // A_1*A_1 (betont Flanken) bit1 *= gainBit1; sum1 = 0; sum2 = 0; for (i = 0; i < 2*N; i++) { si = bufs[(sample+2*N-i) % (2*N)]; sum1 += si*COSf_(i); sum2 += si*SINf_(i); } bit_ = (sum1*sum1 + sum2*sum2)/(double)(N*N); // A__*A__ (betont Flanken) bit_ *= gainBit_; buf0[sample % (2*N)] = bit0; buf1[sample % (2*N)] = bit1; delay_s = bufs[(sample+N) % (2*N)]; // sample - N delay_1 = buf1[(sample+2*N-N/2) % (2*N)]; // sample - N/2 delay_0 = buf0[(sample+2*N-N/2) % (2*N)]; // sample - N/2 delay__ = bit_; // sample sbit = (delay_1 > delay_0) ? 1 : -1; if (bit_ > delay_1 && bit_ > delay_0) sbit = 0; bufsbit[sample % N] = sbit; if (fout) { out[0] = delay_s; out[1] = delay_1 * gainOut; out[2] = delay_0 * gainOut; out[3] = delay__ * gainOut; out[4] = sbit * 0.4; f32write_mults(fout, out, chOut); } else { if (sbit != 0 && sync > 4*N) { // TODO: accurate frame-sync frame_sync = 1; } if (sbit == 0) sync += 1; else sync = 0; if (frame_sync) { bytepos = 0; bitpos = 0; framesample = 0; bitsample = 0; frame_sync = 0; } if (bytepos < FRAMELEN) { bitsample = framesample % N; if (bitsample == N-1) { if (bitpos < 8) { mbit = 0; for (i = -N/4; i < N/4; i++) { mbit += bufsbit[(sample + N/2 + i) % N]; } bitbuf[bitpos] = (mbit > 0) ? 1 : 0; bitpos++; } if (bitpos == 8) { byteval = bits2byte(bitbuf); if (byteval == 0x10 && frame[bytepos-1] == 0x10) frame[bytepos-1] = 0x10; else { // woher die doppelte 0x10? frame[bytepos] = byteval & 0xFF; // koennte vom TSIP-Protokoll kommen: bytepos++; // , } // wobei =0x10, =0x03. bitpos++; // wenn 0x10 in data, dann doppelt. } // // TODO: optional byte-sync } framesample++; if (framesample % (10*N) == 0) bitpos = 0; } if (bytepos == FRAMELEN) { print_frame(FRAMELEN); bitpos = 0; bytepos++; for (i=0; i