// Set GPIO pin assignment through compile options... #define DEBUG // Assign pins 1 and 2 to the RS-232, and direct debug output through this port // Note: This disables the input ports on these pins (GPIO_0 and GPIO_1). #define EIGHTBITDAC // Assign pins 11 and 12 to drive the DAC. // Note: This disables the input ports on these pins (GPIO_8 and GPIO_9). // End of compile options // OK, so the C++ preprocessor can't do any maths, so we have to manually expand the above selection to match the X and Y resolution... #ifdef EIGHTBITDAC #define DAC_Bits 8 // Width of hardware DAC in bits. #define BitMapSize 256 // Match X to Y resolution #else #define DAC_Bits 6 // Width of hardware DAC in bits. #define BitMapSize 64 // Match X to Y resolution #endif #include #include #include #include "pico/stdlib.h" #include "hardware/pio.h" #include "hardware/irq.h" #include "hardware/clocks.h" #include "hardware/dma.h" #include "hardware/spi.h" #include "rotary_encoder.pio.h" #include "blink.pio.h" #include "FastDAC.pio.h" #include "SlowDAC.pio.h" // Define all GPIO connections... // Switch connections... // ┌──────────┬────────────┬──────────────────────┐ // │ PGA2040 │ Connection │ Function │ // ├──────────┼────────────┼──────────────────────┤ const uint SW0 = 16; // │ GPIO 16 │ Switch 0 │ 0=Level,1=Freq │ const uint SW1 = 15; // │ GPIO 15 │ Switch 1 │ 0=Sine, 1=Square │ const uint SW2 = 18; // │ GPIO 18 │ Switch 2 │ 0=Triangle, 1=Square │ const uint SW3 = 17; // │ GPIO 17 │ Switch 3 │ 0=Hz, 1=KHz │ const uint SW4 = 19; // │ GPIO 19 │ Switch 4 │ │ // └──────────┴────────────┴──────────────────────┘ // Nixie connections... // Note: Cathodes - connect through a 74141 Nixie driver chip, // so only 4 data bits are required // ┌──────────┬────────────┬──────────────────────┐ // │ PGA2040 │ Connection │ Function │ // ├──────────┼────────────┼──────────────────────┤ const uint Anode_0 = 27; // │ GPIO 27 │ Anode 0 │ Units │ const uint Anode_1 = 28; // │ GPIO 28 │ Anode 0 │ 10's │ const uint Anode_2 = 29; // │ GPIO 29 │ Anode 0 │ 100's │ const uint Cathode_0 = 23; // │ GPIO 23 │ Cathode 0 │ Data bit 0 │ const uint Cathode_1 = 24; // │ GPIO 24 │ Cathode 0 │ Data bit 1 │ const uint Cathode_2 = 25; // │ GPIO 25 │ Cathode 0 │ Data bit 2 │ const uint Cathode_3 = 26; // │ GPIO 26 │ Cathode 0 │ Data bit 3 │ // └──────────┴────────────┴──────────────────────┘ #define SPI_PORT spi1 // The SPI connections will require RP2040 SPI port #1... // ┌──────────┬────────────────┬──────────────────┐ // │ PGA2040 │ Connection │ MCP41010 │ // ├──────────┼────────────────┼──────────────────┤ const uint PIN_SCK = 10; // │ GPIO 10 │ SCK/spi1_sclk │ SCK (pin 2) │ const uint PIN_MOSI = 11; // │ GPIO 11 │ MOSI/spi1_tx │ SI (pin 3) │ const uint PIN_CS = 12; // │ GPIO 12 │ Chip select │ CS (pin 1) │ // └──────────┴────────────────┴──────────────────┘ const uint Onboard_LED = 14; // Onboard LED const uint EncoderClock = 21; const uint EncoderData = 22; // D2A connections... // Note: These are defined in the FastDAC.pio and SlowDAC.pio files. // They are only included here for completeness. // ┌──────────┬─────────────┬─────────────────────┐ // │ PGA2040 │ Connection │ Function │ // ├──────────┼─────────────┤─────────────────────┤ // │ GPIO 2 │ Data bit 0 │ Least significant │ // │ GPIO 3 │ Data bit 1 │ │ // │ GPIO 4 │ Data bit 2 │ │ // │ GPIO 5 │ Data bit 3 │ │ // │ GPIO 6 │ Data bit 4 │ │ // │ GPIO 7 │ Data bit 5 │ │ // │ GPIO 8 │ Data bit 6 │ │ // │ GPIO 9 │ Data bit 7 │ Most significant │ // └──────────┴─────────────┘─────────────────────┘ // Define useful constants... #define Slow 0 #define Fast 1 #define _Sine_ 0 #define _Square_ 1 #define _Triangle_ 2 #define _Frequency_ 0 // For use with RotaryEnc array #define _Level_ 1 #define _WaveForm_ 2 // Define GPIO lookup tables... #ifdef DEBUG // SW0 and SW1 assigned to RS-232 port... //const unsigned int GPIO_Inputs[] = {SW2, SW3, SW4, SW5, SW6, EncoderClock, EncoderData}; const unsigned int GPIO_Inputs[] = {SW0, SW1, SW2, SW3, SW4, EncoderClock, EncoderData}; const unsigned GPIO_Outputs[] = {Anode_0, Anode_1, Anode_2, Cathode_0, Cathode_1, Cathode_2, Cathode_3, PIN_CS, PIN_SCK, PIN_MOSI}; #else // SW0 and SW1 assigned as GPIO inputs... const unsigned int GPIO_Inputs[] = {SW0, SW1, SW2, SW3, SW4, SW5, SW6, SW7, EncoderClock, EncoderData}; const unsigned GPIO_Outputs[] = {Anode_0, Anode_1, Anode_2, Cathode_0, Cathode_1, Cathode_2, Cathode_3, PIN_CS}; #endif // Global variables... int FreqMultiplier, ModeSelect, WaveSelect, ScanCtr, NixieVal, ScaledVal, Frequency, UpdateReq, GPIO_count; uint PrevStatus; int WaveForm_Type = _Sine_; int RotaryEnc[3]; // Changes to the Rotary Encoder will update one of these 3 values. // The value to be updated is determined by the current state of the application. const uint32_t transfer_count = BitMapSize ; // Number of DMA transfers per event int NixieBuffer[3]; // Values to be displayed on Nixie tubes - Tube0=>1's // - Tube1=>10's // - Tube2=>100's int raw_sin[BitMapSize] ; unsigned short DAC_data[BitMapSize] __attribute__ ((aligned(2048))) ; // Align DAC data void blink_pin_forever(PIO pio, uint sm, uint offset, uint pin, uint freq); class RotaryEncoder { // Class to initialise a state machine to read the rotation of the rotary encoder // Based on the GitHub example here... // https://github.com/GitJer/Some_RPI-Pico_stuff/tree/main/Rotary_encoder public: // constructor // rotary_encoder_A is the pin for the A of the rotary encoder. // The B of the rotary encoder has to be connected to the next GPIO. RotaryEncoder(uint rotary_encoder_A, uint freq) { uint8_t rotary_encoder_B = rotary_encoder_A + 1; PIO pio = pio0; // Use pio 0 uint8_t sm = 1; // Use state machine 1 pio_gpio_init(pio, rotary_encoder_A); gpio_set_pulls(rotary_encoder_A, false, false); // configure the used pins as input without pull up pio_gpio_init(pio, rotary_encoder_B); gpio_set_pulls(rotary_encoder_B, false, false); // configure the used pins as input without pull up uint offset = pio_add_program(pio, &pio_rotary_encoder_program); // load the pio program into the pio memory... pio_sm_config c = pio_rotary_encoder_program_get_default_config(offset); // make a sm config... sm_config_set_in_pins(&c, rotary_encoder_A); // set the 'in' pins sm_config_set_in_shift(&c, false, false, 0); // set shift to left: bits shifted by 'in' enter at the least // significant bit (LSB), no autopush irq_set_exclusive_handler(PIO0_IRQ_0, pio_irq_handler); // set the IRQ handler irq_set_enabled(PIO0_IRQ_0, true); // enable the IRQ pio0_hw->inte0 = PIO_IRQ0_INTE_SM0_BITS | PIO_IRQ0_INTE_SM1_BITS; pio_sm_init(pio, sm, 16, &c); // init the state machine // Note: the program starts after the jump table -> initial_pc = 16 pio_sm_set_enabled(pio, sm, true); // enable the state machine #ifdef DEBUG printf("PIO:0 SM:%d - Rotary encoder' @ %dHz\n\n", sm, freq); #endif } private: static void pio_irq_handler() { if (pio0_hw->irq & 2) { // test if irq 0 was raised switch (ModeSelect) { case 0b001: // Top: Frequency range 0 to 999 RotaryEnc[_Frequency_]--; if ( RotaryEnc[_Frequency_] < 0 ) { RotaryEnc[_Frequency_] = 999; } UpdateReq |= 0b010; // Flag to update the frequency break; case 0b010: // Bottom : Level range 0 to 99 RotaryEnc[_Level_]--; if ( RotaryEnc[_Level_] < 0 ) { RotaryEnc[_Level_] = 99; } UpdateReq |= 0b001; // Flag to update the level break; case 0b011: // Middle: WaveForm range 0 to 4 RotaryEnc[_WaveForm_]--; if ( RotaryEnc[_WaveForm_] < 0 ) { RotaryEnc[_WaveForm_] = 99; } UpdateReq |= 0b100; // Flag to update the waveform } } if (pio0_hw->irq & 1) { // test if irq 1 was raised switch (ModeSelect) { case 0b001: // Top: Frequency range 0 to 999 RotaryEnc[_Frequency_]++; if ( RotaryEnc[_Frequency_] > 999 ) { RotaryEnc[_Frequency_] = 0; } UpdateReq |= 0b010; // Flag to update the frequency break; case 0b010: // Bottom : Level range 0 to 99 RotaryEnc[_Level_]++; if ( RotaryEnc[_Level_] > 99 ) { RotaryEnc[_Level_] = 0; } UpdateReq |= 0b001; // Flag to update the level break; case 0b011: // Middle: WaveForm range 0 to 4 RotaryEnc[_WaveForm_]++; if ( RotaryEnc[_WaveForm_] > 99) { RotaryEnc[_WaveForm_] = 0; } UpdateReq |= 0b100; // Flag to update the waveform } } pio0_hw->irq = 3; // clear both interrupts } PIO pio; // the pio instance uint sm; // the state machine }; class blink_forever { // Class to initialise a state machine to blink a GPIO pin public: blink_forever(PIO pio, uint sm, uint offset, uint pin, uint freq, uint blink_div) { blink_program_init(pio, sm, offset, pin, blink_div); pio_sm_set_enabled(pio, sm, true); #ifdef DEBUG printf("PIO:0 SM:%d - Blink @ %dHz\n", sm, freq); #endif } }; class DMAtoDAC_channel { public: // Constructor // The PIO clock dividers are 16-bit integer, 8-bit fractional, with first-order delta-sigma for the fractional divider. // The clock divisor can vary between 1 and 65536, in increments of 1/256. // If DAC_div exceeds 2^16 (65,536), the registers wrap around, and the State Machine clock will be incorrect. // A slow version of the DAC State Machine is used for frequencies below 17Hz, allowing the value of DAC_div to // be kept within range.s DMAtoDAC_channel() { PIO pio = pio1; StateMachine[Fast] = Single_DMA_FIFO_SM_GPIO_DAC(pio,Fast); // Create the Fast DAC channel (frequencies: 17Hz to 999KHz) StateMachine[Slow] = Single_DMA_FIFO_SM_GPIO_DAC(pio,Slow); // Create the Slow DAC channel (frequencies: 0Hz to 16Hz) } public: int Single_DMA_FIFO_SM_GPIO_DAC(PIO _pio, int _speed) { // Create a DMA channel and its associated State Machine. // DMA => FIFO => State Machine => GPIO pins => DAC uint _pioNum = pio_get_index(_pio); // Get user friendly index number. int _offset; char _name[10]; uint _StateMachine = pio_claim_unused_sm(_pio, true); // Find a free state machine on the specified PIO - error if there are none. if (_speed == 1) { // Configure the state machine to run the FastDAC program... _offset = pio_add_program(_pio, &pio_FastDAC_program); // Use helper function included in the .pio file. pio_FastDAC_program_init(_pio, _StateMachine, _offset, 2); strcpy(_name,"Fast"); } else { // Configure the state machine to run the SlowDAC program... _offset = pio_add_program(_pio, &pio_SlowDAC_program); // Use helper function included in the .pio file. pio_SlowDAC_program_init(_pio, _StateMachine, _offset, 2); strcpy(_name,"Slow"); } // Get 2 x free DMA channels for the DAC - panic() if there are none int ctrl_chan = dma_claim_unused_channel(true); int data_chan = dma_claim_unused_channel(true); // Setup the DAC control channel... // The control channel transfers two words into the data channel's control registers, then halts. The write address wraps on a two-word // (eight-byte) boundary, so that the control channel writes the same two registers when it is next triggered. dma_channel_config fc = dma_channel_get_default_config(ctrl_chan); // default configs channel_config_set_transfer_data_size(&fc, DMA_SIZE_32); // 32-bit txfers channel_config_set_read_increment(&fc, false); // no read incrementing channel_config_set_write_increment(&fc, false); // no write incrementing dma_channel_configure( ctrl_chan, &fc, &dma_hw->ch[data_chan].al1_transfer_count_trig, // txfer to transfer count trigger &transfer_count, 1, false ); // Setup the DAC data channel... // 32 bit transfers. Read address increments after each transfer. fc = dma_channel_get_default_config(data_chan); channel_config_set_transfer_data_size(&fc, DMA_SIZE_32); // 32-bit txfers channel_config_set_read_increment(&fc, true); // increment the read adddress channel_config_set_write_increment(&fc, false); // don't increment write address channel_config_set_dreq(&fc, pio_get_dreq(pio, _StateMachine, true)); // Transfer when PIO SM TX FIFO has space channel_config_set_chain_to(&fc, ctrl_chan); // chain to the controller DMA channel #ifdef EIGHTBITDAC channel_config_set_ring(&fc, false, 9); // 8 bit DAC 1<<9 byte boundary on read ptr. This is why we needed alignment! #else channel_config_set_ring(&fc, false, 7); // 6 bit DAC 1<<7 byte boundary on read ptr. This is why we needed alignment! #endif dma_channel_configure( data_chan, // Channel to be configured &fc, // The configuration we just created &pio->txf[_StateMachine], // Write to FIFO DAC_data, // The initial read address (AT NATURAL ALIGNMENT POINT) BitMapSize, // Number of transfers; in this case each is 2 byte. false // Don't start immediately. ); // Note: Both DMA channels are left permanently running. The active channel is selected by enabling/disabling the // associated State Machine. dma_start_channel_mask(1u << ctrl_chan); // Start the control DMA channel #ifdef DEBUG printf("%s DMA channel:\n", _name); printf(" PIO: %d\n",_pioNum); printf(" State machine: %d\n",_StateMachine); printf(" Program offset: %d\n",_offset); printf(" DMA Ctrl channel: %d\n",ctrl_chan); printf(" DMA Data channel: %d\n",data_chan); #endif return(_StateMachine); } // Setter functions... void Set_Frequency(int _frequency){ // If DAC_div exceeds 2^16 (65,536), the registers wrap around, and the State Machine clock will be incorrect. // A slow version of the DAC State Machine is used for frequencies below 17Hz, allowing the value of DAC_div to // be kept within range. float DAC_freq = _frequency * BitMapSize; // Target frequency... float DAC_div = 2 * (float)clock_get_hz(clk_sys) / DAC_freq; // ...calculate the PIO clock divider required for the given Target frequency float Fout = 2 * (float)clock_get_hz(clk_sys) / (BitMapSize * DAC_div); // Actual output frequency if (_frequency >= 34) { // Fast DAC ( Frequency range from 34Hz to 999Khz ) pio_sm_set_clkdiv(pio, StateMachine[Fast], DAC_div); // Set the State Machine clock speed pio_sm_set_enabled(pio, StateMachine[Fast], true); // Fast State Machine active pio_sm_set_enabled(pio, StateMachine[Slow], false); // Slow State Machine inactive #ifdef DEBUG printf("Rotation: %03d - Fast SM - SM Div: %8.4f - SM Clk: %07.0gHz - Fout: %.1f",_frequency, DAC_div, DAC_freq, Fout); #endif } else { // Slow DAC ( 1Hz=>16Hz ) DAC_div = DAC_div / 64; // Adjust DAC_div to keep within useable range DAC_freq = DAC_freq * 64; pio_sm_set_clkdiv(pio, StateMachine[Slow], DAC_div); // Set the State Machine clock speed pio_sm_set_enabled(pio, StateMachine[Fast], false); // Fast State Machine inactive pio_sm_set_enabled(pio, StateMachine[Slow], true); // Slow State Machine active #ifdef DEBUG printf("Rotation: %03d - Slow SM - SM Div: %8.4f - SM Clk: %07.0gHz - Fout: %.1f",_frequency, DAC_div, DAC_freq, Fout); #endif } #ifdef DEBUG if (_frequency < 1000) { printf("Hz\n"); } else { printf("KHz\n"); } #endif } //static int offset; PIO pio = pio1; static uint StateMachine[2]; }; // Global Var... uint DMAtoDAC_channel::StateMachine[2]; void WriteCathodes (int Data) { // Create bit pattern on cathode GPIO's corresponding to the Data input... int shifted; shifted = Data ; gpio_put(Cathode_0, shifted %2) ; shifted = shifted /2 ; gpio_put(Cathode_1, shifted %2); shifted = shifted /2; gpio_put(Cathode_2, shifted %2); shifted = shifted /2; gpio_put(Cathode_3, shifted %2); } bool Repeating_Timer_Callback(struct repeating_timer *t) { // Scans the Nixie Anodes, and transfers data from the Nixie Buffers to the Cathodes. switch (ScanCtr) { case 0: gpio_put(Anode_2, 0) ; // Turn off previous anode WriteCathodes(NixieBuffer[0]); // Set up new data on cathodes (Units) gpio_put(Anode_0, 1) ; // Turn on current anode break; case 1: gpio_put(Anode_0, 0) ; // Turn off previous anode WriteCathodes(NixieBuffer[1]); // Set up new data on cathodes (10's) gpio_put(Anode_1, 1) ; // Turn on current anode break; case 2: gpio_put(Anode_1, 0) ; // Turn off previous anode WriteCathodes(NixieBuffer[2]); // Set up new data on cathodes (100's) gpio_put(Anode_2, 1) ; // Turn on current anode. } ScanCtr++; if ( ScanCtr > 2 ) { ScanCtr = 0; } // Bump and Wrap the counter return true; } void WaveForm_Update(int _WaveForm_Type, int _WaveForm_Value) { int i; int offset = BitMapSize/2 - 1; // Shift sine waves up above X axis const float _2Pi = 6.283; // 2*Pi float a,b,x1,x2,g1,g2; switch (_WaveForm_Type) { case _Sine_: _WaveForm_Value = _WaveForm_Value % 64; // Sine value cycles after 7 #ifdef DEBUG printf("Sine wave: Fundamental + %d harmonics.\n",_WaveForm_Value); #endif for (i=0; i= 1) { a += offset/3 * sin((float)_2Pi*3*i / (float)BitMapSize); } // Add 3rd harmonic if (_WaveForm_Value >= 2) { a += offset/5 * sin((float)_2Pi*5*i / (float)BitMapSize); } // Add 5th harmonic if (_WaveForm_Value >= 3) { a += offset/7 * sin((float)_2Pi*7*i / (float)BitMapSize); } // Add 7th harmonic if (_WaveForm_Value >= 4) { a += offset/9 * sin((float)_2Pi*9*i / (float)BitMapSize); } // Add 9th harmonic if (_WaveForm_Value >= 5) { a += offset/11 * sin((float)_2Pi*11*i / (float)BitMapSize); } // Add 11th harmonic if (_WaveForm_Value >= 6) { a += offset/13 * sin((float)_2Pi*13*i / (float)BitMapSize); } // Add 13th harmonic if (_WaveForm_Value >= 7) { a += offset/15 * sin((float)_2Pi*15*i / (float)BitMapSize); } // Add 15th harmonic DAC_data[i] = (int)(a)+offset; // Sum all harmonics and add vertical offset } break; case _Square_: #ifdef DEBUG printf("Square wave: %2d%% duty cycle\n",_WaveForm_Value); #endif b = _WaveForm_Value * BitMapSize / 100; // Convert % to value for (i=0; i x1) { DAC_data[i] = (BitMapSize - 1) - ((i - x1) * g2); } // Falling section of waveform } break; } // finished with _WaveForm_Value, so ok to trash it as we update the display... NixieBuffer[0] = _WaveForm_Value % 10 ; // First Nixie ( 1's ) _WaveForm_Value /= 10 ; // _value=>10's NixieBuffer[1] = _WaveForm_Value % 10 ; // Second Nixie ( 10's ) _WaveForm_Value /= 10 ; // _value=>100's NixieBuffer[2] = 10 ; // Blank Third Nixie ( 100's ) } static inline void cs_select() { asm volatile("nop \n nop \n nop"); gpio_put(PIN_CS, 0); // Active low asm volatile("nop \n nop \n nop"); } static inline void cs_deselect() { asm volatile("nop \n nop \n nop"); gpio_put(PIN_CS, 1); asm volatile("nop \n nop \n nop"); } static void MCP41010_write(int _data) { // Formats and transmits 16 bit data word to the MCP41010 digital potentiometer... uint8_t buff[2]; buff[0] = 0x11; // Control byte: Write to potentiometer #1 buff[1] = _data; // Data byte cs_select(); spi_write_blocking(SPI_PORT, buff, 2); cs_deselect(); } void gpio_callback(uint gpio, uint32_t events) { volatile bool CurBit,PrevBit; volatile uint SwitchStatus = 0; volatile uint BitMask = 1 << GPIO_count-2; // printf("Previous Status: %b\n",PrevStatus); // Scan down through input ports and create status bitmap... for (int i=GPIO_count-2; i>=0 ; i--) { // Note: 'GPIOCount-2' skips encoder pins SwitchStatus <<= 1; // Bit shift left CurBit = gpio_get(GPIO_Inputs[i]); PrevBit = PrevStatus & BitMask; SwitchStatus += CurBit; // printf("Bit %d - Masked=%08b value=%b SwitchStatus=%08b\n",i,PrevBit,CurBit,SwitchStatus); if (PrevBit != CurBit) { // Do stuff here... switch (i) { case 0: if (CurBit) { printf("Frequency\n"); ModeSelect = 0b0001; UpdateReq = 0b010; } else { printf("Level\n"); ModeSelect = 0b0010; UpdateReq = 0b001; } // Flag to update the level break; case 1: if (CurBit) { printf("Square\n"); WaveForm_Type = _Square_ ; RotaryEnc[_WaveForm_] = 50; // Set default: 50% duty cycle ModeSelect = 0b011; } else { printf("Sine\n"); WaveForm_Type = _Sine_ ; RotaryEnc[_WaveForm_] = 0; // Set default: Sine wave, no harmonics ModeSelect = 0b011; } UpdateReq = 0b100; // Flag to update the waveform break; case 2: if (CurBit) { printf("Square\n"); WaveForm_Type = _Square_ ; RotaryEnc[_WaveForm_] = 50; // Set default: 50% duty cycle ModeSelect = 0b011; } else { printf("Triangle\n"); WaveForm_Type = _Triangle_ ; RotaryEnc[_WaveForm_] = 50 ; // Set default: 50% duty cycle ModeSelect = 0b011; } UpdateReq = 0b100; // Flag to update the waveform break; case 3: if (CurBit) { printf("Hz\n"); FreqMultiplier = 1; } else { printf("KHz\n"); FreqMultiplier = 1000; } UpdateReq = 0b010; // Flag to update the frequency break; } // printf("Bit %d / Switch %d / GPIO %2d has changed. %b->%b\n",i,i+2,GPIO_Inputs[i],PrevBit,CurBit); } BitMask >>= 1; // Next bit } // printf("Current Status: %b\n\n",SwitchStatus); PrevStatus = SwitchStatus; } int main() { static const float blink_freq = 16000; // Reduce SM clock to keep flash visible... static const float rotary_freq = 16000; // Clock speed reduced to eliminate rotary encoder jitter... // set_sys_clock_khz(280000, true); // Overclocking the core by a factor of 2 allows 1MHz from DAC float blink_div = (float)clock_get_hz(clk_sys) / blink_freq; // ... calculate the required blink SM clock divider float rotary_div = (float)clock_get_hz(clk_sys) / rotary_freq; //... then calculate the required rotary encoder SM clock divider #ifdef DEBUG stdio_init_all(); // Needed for printf #endif // Initialise GPIO Outputs... GPIO_count = sizeof(GPIO_Outputs)/sizeof(*GPIO_Outputs); for ( uint i = 0; i < GPIO_count; i++ ) { gpio_init(GPIO_Outputs[i]); gpio_set_dir(GPIO_Outputs[i], GPIO_OUT); } gpio_put(PIN_CS, 1); // SPI chip select is active-low, so set to inactive state /* //Initialise PIO Outputs for DAC... for ( uint i = 0; i < DAC_Bits; i++ ) { gpio_set_slew_rate(GPIOvals[i+2],GPIO_SLEW_RATE_FAST); // GPIO Warp factor 10 gpio_set_drive_strength(GPIOvals[i+2],GPIO_DRIVE_STRENGTH_12MA); } */ // Initialise GPIO Inputs... // TBD - DO I WANT PULL UPS ON THE ENCODER PINS ??? GPIO_count = sizeof(GPIO_Inputs)/sizeof(*GPIO_Inputs); for ( uint i = 0; i < GPIO_count; i++ ) { gpio_init(GPIO_Inputs[i]); gpio_set_dir(GPIO_Inputs[i], GPIO_IN); gpio_pull_up(GPIO_Inputs[i]); // Enable pull up } // Enable GPIO interupts... gpio_set_irq_enabled_with_callback(SW0, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true, &gpio_callback); gpio_set_irq_enabled(SW1, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true); gpio_set_irq_enabled(SW2, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true); gpio_set_irq_enabled(SW3, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true); gpio_set_irq_enabled(SW4, GPIO_IRQ_EDGE_RISE | GPIO_IRQ_EDGE_FALL, true); // Set SPI0 to 0.5MHz... spi_init(SPI_PORT, 500 * 1000); gpio_set_function(PIN_SCK, GPIO_FUNC_SPI); gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI); RotaryEncoder my_encoder(EncoderClock, rotary_freq); // Confirm memory alignment #ifdef DEBUG printf("Confirm memory alignment...\nBeginning: %x", &DAC_data[0]); printf("\nFirst: %x", &DAC_data[1]); printf("\nSecond: %x\n", &DAC_data[2]); int tmp = BitMapSize; printf("Size (bytes): %d\n\n",tmp); #endif // Set up the State machines... PIO pio = pio0; uint offset = pio_add_program(pio, &pio_blink_program); blink_forever my_blinker(pio, 0, offset, Onboard_LED, blink_freq, blink_div); // SM0=>onboard LED DMAtoDAC_channel DataChannel; // Create DMAtoDAC_channel object // Create a repeating timer that calls Repeating_Timer_Callback. // If the delay is > 0 then this is the delay between the previous callback ending and the next starting. If the delay is negative // then the next call to the callback will be exactly 7ms after the start of the call to the last callback. struct repeating_timer timer; add_repeating_timer_ms(-7, Repeating_Timer_Callback, NULL, &timer); // 7ms - Short enough to prevent Nixie tube flicker // Long enough to prevent Nixie tube bluring RotaryEnc[_Frequency_] = 100; // Default: 100Hz RotaryEnc[_Level_] = 50; // Default: 50% RotaryEnc[_WaveForm_] = 0; // Default: Sine wave, no harmonics // GPIO interrupt routine is triggerd at start up, but has no 'previous state' info. This means we have to manualy set a couple of defaults... // TBD - WHY NOT READ THE SWITCHES ???? WaveForm_Type = _Sine_ ; FreqMultiplier = 1; // Default: Hz ModeSelect = 0b0001; UpdateReq = 0b0111; // Set flags to load all default values while (true) { // Infinite loop if (UpdateReq) { // Falls through here when any of the rotary encoder values change... if (UpdateReq & 0b010) { // Frequency has changed NixieVal = RotaryEnc[_Frequency_]; // Value in range 0->999 Frequency = NixieVal * FreqMultiplier; DataChannel.Set_Frequency(Frequency); NixieBuffer[0] = NixieVal % 10 ; // First Nixie ( 1's ) NixieVal /= 10 ; // finished with NixieVal, so ok to trash it. NixieVal=>10's NixieBuffer[1] = NixieVal % 10 ; // Second Nixie ( 10's ) NixieVal /= 10 ; // NixieVal=>100's NixieBuffer[2] = NixieVal % 10 ; // Third Nixie ( 100's ) } if (UpdateReq & 0b100) { // Waveform has changed NixieVal = RotaryEnc[_WaveForm_]; WaveForm_Update(WaveForm_Type, NixieVal); NixieBuffer[0] = NixieVal % 10 ; // First Nixie ( 1's ) NixieVal /= 10 ; // finished with NixieVal, so ok to trash it. NixieVal=>10's NixieBuffer[1] = NixieVal % 10 ; // Second Nixie ( 10's ) NixieVal /= 10 ; // NixieVal=>100's NixieBuffer[2] = 10 ; // Blank Third Nixie ( 100's ) } if (UpdateReq & 0b001) { // Level has changed NixieVal = RotaryEnc[_Level_]; ScaledVal = NixieVal*255/99; // Scale the level. Display: 0->99 - Potentiometer: 0->255 #ifdef DEBUG printf("Level: %02d%% Level(Abs): %d\n",NixieVal,ScaledVal); #endif MCP41010_write(ScaledVal); // Send over SPI to digital potentiometer NixieBuffer[0] = NixieVal % 10 ; // First Nixie ( 1's ) NixieVal /= 10 ; // finished with teNixieValmp, so ok to trash it. NixieVal=>10's NixieBuffer[1] = NixieVal % 10 ; // Second Nixie ( 10's ) NixieVal /= 10 ; // NixieVal=>100's NixieBuffer[2] = 10 ; // Blank Third Nixie ( 100's ) } UpdateReq = 0; // All up to date, so clear the flag } } }