// Set GPIO pin assignment through compile options... #define DEBUG // Assign pins 1 and 2 to the RS-232, and direct debug output through this port // Note: This disables the input ports on these pins (GPIO_0 and GPIO_1). #define EIGHTBITDAC // Assign pins 11 and 12 to drive the DAC. // Note: This disables the input ports on these pins (GPIO_8 and GPIO_9). // End of compile options // OK, so the C++ preprocessor can't do any maths, so we have to manually expand the above selection to match the X and Y resolution... #ifdef EIGHTBITDAC #define DAC_Bits 8 // Width of hardware DAC in bits. #define BitMapSize 256 // Match X to Y resolution #else #define DAC_Bits 6 // Width of hardware DAC in bits. #define BitMapSize 64 // Match X to Y resolution #endif #include #include #include #include "pico/stdlib.h" #include "hardware/pio.h" #include "hardware/irq.h" #include "hardware/clocks.h" #include "hardware/dma.h" #include "hardware/spi.h" #include "rotary_encoder.pio.h" #include "blink.pio.h" #include "FastDAC.pio.h" #include "SlowDAC.pio.h" #define WaveformCount 10 // Number of different waveform options #define SW_2way_1 13 // GPIO connection #define SW_3way_1 14 // GPIO connection #define SW_3way_2 15 // GPIO connection // SPI connections... PICO -> -> MCP41010 #define PIN_SCK 10 // GPIO 10 (pin 14) -> SCK/spi1_sclk -> SCK (pin 2) #define PIN_MOSI 11 // GPIO 11 (pin 15) -> MOSI/spi1_tx -> SI (pin 3) #define PIN_CS 12 // GPIO 12 (pin 16) -> Chip select -> CS (pin 1) #define SPI_PORT spi1 // Port #1 #define Slow 0 #define Fast 1 // Global variables... int SW_2way, Last_SW_2way, SW_3way, Last_SW_3way, ScanCtr, NixieVal, ScaledVal, Frequency; int UpdateReq; // Flag from Rotary Encoder to main loop indicating a value has changed const uint32_t transfer_count = BitMapSize ; // Number of DMA transfers per event int NixieCathodes[4] = { 18, 19, 20, 21 }; // GPIO ports connecting to Nixie Cathodes - Data0=>18 Data3=>21 int NixieAnodes[3] = { 22, 26, 27 }; // GPIO ports connecting to Nixie Anodes - Anode0=>22 Anode2=>27 int EncoderPorts[2] = { 16, 17 }; // GPIO ports connecting to Rotary Encoder - 16=>Clock 17=>Data int NixieBuffer[3] = { 6, 7, 8 }; // Values to be displayed on Nixie tubes - Tube0=>1's // - Tube1=>10's // - Tube2=>100's int raw_sin[BitMapSize] ; unsigned short DAC_data[BitMapSize] __attribute__ ((aligned(2048))) ; // Align DAC data void blink_pin_forever(PIO pio, uint sm, uint offset, uint pin, uint freq); class RotaryEncoder { // class to initialise a state machine to read public: // the rotation of the rotary encoder // constructor // rotary_encoder_A is the pin for the A of the rotary encoder. // The B of the rotary encoder has to be connected to the next GPIO. RotaryEncoder(uint rotary_encoder_A, uint freq) { uint8_t rotary_encoder_B = rotary_encoder_A + 1; PIO pio = pio0; // Use pio 0 uint8_t sm = 1; // Use state machine 1 pio_gpio_init(pio, rotary_encoder_A); gpio_set_pulls(rotary_encoder_A, false, false); // configure the used pins as input without pull up pio_gpio_init(pio, rotary_encoder_B); gpio_set_pulls(rotary_encoder_B, false, false); // configure the used pins as input without pull up uint offset = pio_add_program(pio, &pio_rotary_encoder_program); // load the pio program into the pio memory... pio_sm_config c = pio_rotary_encoder_program_get_default_config(offset); // make a sm config... sm_config_set_in_pins(&c, rotary_encoder_A); // set the 'in' pins sm_config_set_in_shift(&c, false, false, 0); // set shift to left: bits shifted by 'in' enter at the least // significant bit (LSB), no autopush irq_set_exclusive_handler(PIO0_IRQ_0, pio_irq_handler); // set the IRQ handler irq_set_enabled(PIO0_IRQ_0, true); // enable the IRQ pio0_hw->inte0 = PIO_IRQ0_INTE_SM0_BITS | PIO_IRQ0_INTE_SM1_BITS; pio_sm_init(pio, sm, 16, &c); // init the state machine // Note: the program starts after the jump table -> initial_pc = 16 pio_sm_set_enabled(pio, sm, true); // enable the state machine #ifdef DEBUG printf("PIO:0 SM:%d - Rotary encoder' @ %dHz\n\n", sm, freq); #endif } void set_Frequency(int _Frequency) { Frequency = _Frequency; } void set_WaveForm(int _WaveForm) { WaveForm = _WaveForm; } void set_Level(int _Level) { Level = _Level; } int get_Frequency(void) { return Frequency; } int get_WaveForm(void) { return WaveForm; } int get_Level(void) { return Level; } private: static void pio_irq_handler() { if (pio0_hw->irq & 2) { // test if irq 0 was raised switch (SW_3way) { case 0b010: // Top: Frequency range 0 to 999 Frequency--; if ( Frequency < 0 ) { Frequency = 999; } UpdateReq |= 0b010; // Flag to update the frequency break; case 0b001: // Bottom : Level range 0 to 99 Level--; if ( Level < 0 ) { Level = 99; } UpdateReq |= 0b001; // Flag to update the level break; case 0b011: // Middle: WaveForm range 0 to 4 WaveForm--; if ( WaveForm < 0 ) { WaveForm = WaveformCount; } UpdateReq |= 0b100; // Flag to update the waveform } } if (pio0_hw->irq & 1) { // test if irq 1 was raised switch (SW_3way) { case 0b010: // Top: Frequency range 0 to 999 Frequency++; if ( Frequency > 999 ) { Frequency = 0; } UpdateReq |= 0b010; // Flag to update the frequency break; case 0b001: // Bottom : Level range 0 to 99 Level++; if ( Level > 99 ) { Level = 0; } UpdateReq |= 0b001; // Flag to update the level break; case 0b011: // Middle: WaveForm range 0 to 4 WaveForm++; if ( WaveForm > WaveformCount ) { WaveForm = 0; } UpdateReq |= 0b100; // Flag to update the waveform } } pio0_hw->irq = 3; // clear both interrupts } PIO pio; // the pio instance uint sm; // the state machine static int Frequency; static int WaveForm; static int Level; }; // Global Var... int RotaryEncoder::Frequency; // Initialize static members of class Rotary_encoder... int RotaryEncoder::WaveForm; int RotaryEncoder::Level; class blink_forever { // Class to initialise a state macne to blink a GPIO pin public: blink_forever(PIO pio, uint sm, uint offset, uint pin, uint freq, uint blink_div) { blink_program_init(pio, sm, offset, pin, blink_div); pio_sm_set_enabled(pio, sm, true); #ifdef DEBUG printf("PIO:0 SM:%d - Blink @ %dHz\n", sm, freq); #endif } }; class DMAtoDAC_channel { public: // Constructor // The PIO clock dividers are 16-bit integer, 8-bit fractional, with first-order delta-sigma for the fractional divider. // The clock divisor can vary between 1 and 65536, in increments of 1/256. // If DAC_div exceeds 2^16 (65,536), the registers wrap around, and the State Machine clock will be incorrect. // A slow version of the DAC State Machine is used for frequencies below 17Hz, allowing the value of DAC_div to // be kept within range.s DMAtoDAC_channel() { PIO pio = pio1; StateMachine[Fast] = Single_DMA_FIFO_SM_GPIO_DAC(pio,Fast); // Create the Fast DAC channel (frequencies: 17Hz to 999KHz) StateMachine[Slow] = Single_DMA_FIFO_SM_GPIO_DAC(pio,Slow); // Create the Slow DAC channel (frequencies: 0Hz to 16Hz) } public: int Single_DMA_FIFO_SM_GPIO_DAC(PIO _pio, int _speed) { // Create a DMA channel and its associated State Machine. // DMA => FIFO => State Machine => GPIO pins => DAC uint _pioNum = pio_get_index(_pio); // Get user friendly index number. int _offset; char _name[10]; uint _StateMachine = pio_claim_unused_sm(_pio, true); // Find a free state machine on the specified PIO - error if there are none. if (_speed == 1) { // Configure the state machine to run the FastDAC program... _offset = pio_add_program(_pio, &pio_FastDAC_program); // Use helper function included in the .pio file. pio_FastDAC_program_init(_pio, _StateMachine, _offset, 2); strcpy(_name,"Fast"); } else { // Configure the state machine to run the SlowDAC program... _offset = pio_add_program(_pio, &pio_SlowDAC_program); // Use helper function included in the .pio file. pio_SlowDAC_program_init(_pio, _StateMachine, _offset, 2); strcpy(_name,"Slow"); } // Get 2 x free DMA channels for the DAC - panic() if there are none int ctrl_chan = dma_claim_unused_channel(true); int data_chan = dma_claim_unused_channel(true); // Setup the DAC control channel... // The control channel transfers two words into the data channel's control registers, then halts. The write address wraps on a two-word // (eight-byte) boundary, so that the control channel writes the same two registers when it is next triggered. dma_channel_config fc = dma_channel_get_default_config(ctrl_chan); // default configs channel_config_set_transfer_data_size(&fc, DMA_SIZE_32); // 32-bit txfers channel_config_set_read_increment(&fc, false); // no read incrementing channel_config_set_write_increment(&fc, false); // no write incrementing dma_channel_configure( ctrl_chan, &fc, &dma_hw->ch[data_chan].al1_transfer_count_trig, // txfer to transfer count trigger &transfer_count, 1, false ); // Setup the DAC data channel... // 32 bit transfers. Read address increments after each transfer. fc = dma_channel_get_default_config(data_chan); channel_config_set_transfer_data_size(&fc, DMA_SIZE_32); // 32-bit txfers channel_config_set_read_increment(&fc, true); // increment the read adddress channel_config_set_write_increment(&fc, false); // don't increment write address channel_config_set_dreq(&fc, pio_get_dreq(pio, _StateMachine, true)); // Transfer when PIO SM TX FIFO has space channel_config_set_chain_to(&fc, ctrl_chan); // chain to the controller DMA channel #ifdef EIGHTBITDAC channel_config_set_ring(&fc, false, 9); // 8 bit DAC 1<<9 byte boundary on read ptr. This is why we needed alignment! #else channel_config_set_ring(&fc, false, 7); // 6 bit DAC 1<<7 byte boundary on read ptr. This is why we needed alignment! #endif dma_channel_configure( data_chan, // Channel to be configured &fc, // The configuration we just created &pio->txf[_StateMachine], // Write to FIFO DAC_data, // The initial read address (AT NATURAL ALIGNMENT POINT) BitMapSize, // Number of transfers; in this case each is 2 byte. false // Don't start immediately. ); // Note: Both DMA channels are left permanently running. The active channel is selected by enabling/disabling the // associated State Machine. dma_start_channel_mask(1u << ctrl_chan); // Start the control DMA channel #ifdef DEBUG printf("%s DMA channel:\n", _name); printf(" PIO: %d\n",_pioNum); printf(" State machine: %d\n",_StateMachine); printf(" Program offset: %d\n",_offset); printf(" DMA Ctrl channel: %d\n",ctrl_chan); printf(" DMA Data channel: %d\n",data_chan); #endif return(_StateMachine); } // Setter functions... void Set_Frequency(int _frequency){ // If DAC_div exceeds 2^16 (65,536), the registers wrap around, and the State Machine clock will be incorrect. // A slow version of the DAC State Machine is used for frequencies below 17Hz, allowing the value of DAC_div to // be kept within range. float DAC_freq = _frequency * BitMapSize; // Target frequency... float DAC_div = 2 * (float)clock_get_hz(clk_sys) / DAC_freq; // ...calculate the PIO clock divider required for the given Target frequency float Fout = 2 * (float)clock_get_hz(clk_sys) / (BitMapSize * DAC_div); // Actual output frequency if (_frequency >= 34) { // Fast DAC ( Frequency range from 34Hz to 999Khz ) pio_sm_set_clkdiv(pio, StateMachine[Fast], DAC_div); // Set the State Machine clock speed pio_sm_set_enabled(pio, StateMachine[Fast], true); // Fast State Machine active pio_sm_set_enabled(pio, StateMachine[Slow], false); // Slow State Machine inactive #ifdef DEBUG printf("Rotation: %03d - Fast SM - SM Div: %8.4f - SM Clk: %07.0gHz - Fout: %.1f",_frequency, DAC_div, DAC_freq, Fout); #endif } else { // Slow DAC ( 1Hz=>16Hz ) DAC_div = DAC_div / 64; // Adjust DAC_div to keep within useable range DAC_freq = DAC_freq * 64; pio_sm_set_clkdiv(pio, StateMachine[Slow], DAC_div); // Set the State Machine clock speed pio_sm_set_enabled(pio, StateMachine[Fast], false); // Fast State Machine inactive pio_sm_set_enabled(pio, StateMachine[Slow], true); // Slow State Machine active #ifdef DEBUG printf("Rotation: %03d - Slow SM - SM Div: %8.4f - SM Clk: %07.0gHz - Fout: %.1f",_frequency, DAC_div, DAC_freq, Fout); #endif } #ifdef DEBUG if (_frequency < 1000) { printf("Hz\n"); } else { printf("KHz\n"); } #endif } //static int offset; PIO pio = pio1; static uint StateMachine[2]; }; // Global Var... uint DMAtoDAC_channel::StateMachine[2]; void WriteCathodes (int Data) { // Create bit pattern on cathode GPIO's corresponding to the Data input... int shifted; shifted = Data ; gpio_put(NixieCathodes[0], shifted %2) ; shifted = shifted /2 ; gpio_put(NixieCathodes[1], shifted %2); shifted = shifted /2; gpio_put(NixieCathodes[2], shifted %2); shifted = shifted /2; gpio_put(NixieCathodes[3], shifted %2); } bool Repeating_Timer_Callback(struct repeating_timer *t) { // Scans the Nixie Anodes, and transfers data from the Nixie Buffers to the Cathodes. switch (ScanCtr) { case 0: gpio_put(NixieAnodes[2], 0) ; // Turn off previous anode WriteCathodes(NixieBuffer[0]); // Set up new data on cathodes (Units) gpio_put(NixieAnodes[0], 1) ; // Turn on current anode break; case 1: gpio_put(NixieAnodes[0], 0) ; // Turn off previous anode WriteCathodes(NixieBuffer[1]); // Set up new data on cathodes (10's) gpio_put(NixieAnodes[1], 1) ; // Turn on current anode break; case 2: gpio_put(NixieAnodes[1], 0) ; // Turn off previous anode WriteCathodes(NixieBuffer[2]); // Set up new data on cathodes (100's) gpio_put(NixieAnodes[2], 1) ; // Turn on current anode. } ScanCtr++; if ( ScanCtr > 2 ) { ScanCtr = 0; } // Bump and Wrap the counter return true; } void WaveForm_update (int _value) { int i; int offset = BitMapSize/2 - 1; // Shift sine waves up above X axis const float _2Pi = 6.283; // 2*Pi float a,b,c,d,e; switch (_value) { case 0: #ifdef DEBUG printf("Waveform: %03d - Sine: Fundamental\n",_value); #endif for (i=0; i<(BitMapSize); i++) { DAC_data[i] = (int)(offset * sin((float)i*_2Pi/(float)BitMapSize) + offset); } break; case 1: #ifdef DEBUG printf("Waveform: %03d - Sine: Fundamental + harmonic 3\n",_value); #endif for (i=0; i<(BitMapSize); i++) { a = offset * sin((float)_2Pi*i / (float)BitMapSize); // Fundamental frequency b = offset/3 * sin((float)_2Pi*3*i / (float)BitMapSize); // 3rd harmonic DAC_data[i] = (int)(a+b)+offset; // Sum harmonics and add vertical offset } break; case 2: #ifdef DEBUG printf("Waveform: %03d - Sine: Fundamental + harmonics 3 and 5\n",_value); #endif for (i=0; i<(BitMapSize); i++) { a = offset * sin((float)_2Pi*i / (float)BitMapSize); // Fundamental frequency b = offset/3 * sin((float)_2Pi*3*i / (float)BitMapSize); // 3rd harmonic c = offset/5 * sin((float)_2Pi*5*i / (float)BitMapSize); // 5th harmonic DAC_data[i] = (int)(a+b+c)+offset; // Sum harmonics and add vertical offset } break; case 3: #ifdef DEBUG printf("Waveform: %03d - Sine: Fundamental + harmonics 3,5 and 7\n",_value); #endif for (i=0; i<(BitMapSize); i++) { a = offset * sin((float)_2Pi*i / (float)BitMapSize); // Fundamental frequency b = offset/3 * sin((float)_2Pi*3*i / (float)BitMapSize); // 3rd harmonic c = offset/5 * sin((float)_2Pi*5*i / (float)BitMapSize); // 5th harmonic d = offset/7 * sin((float)_2Pi*7*i / (float)BitMapSize); // 7th harmonic DAC_data[i] = (int)(a+b+c+d)+offset; // Sum harmonics and add vertical offset } break; case 4: #ifdef DEBUG printf("Waveform: %03d - Sine: Fundamental + harmonic 3, 5, 7 and 9\n",_value); #endif for (i=0; i<(BitMapSize); i++) { a = offset * sin((float)_2Pi*i / (float)BitMapSize); // Fundamental frequency b = offset/3 * sin((float)_2Pi*3*i / (float)BitMapSize); // 3rd harmonic c = offset/5 * sin((float)_2Pi*5*i / (float)BitMapSize); // 5th harmonic d = offset/7 * sin((float)_2Pi*7*i / (float)BitMapSize); // 7th harmonic e = offset/9 * sin((float)_2Pi*9*i / (float)BitMapSize); // 9th harmonic DAC_data[i] = (int)(a+b+c+d+e)+offset; // Sum harmonics and add vertical offset } break; case 5: #ifdef DEBUG printf("Waveform: %03d - Square\n",_value); #endif for (i=0; i<(BitMapSize/2); i++){ DAC_data[i] = 0; // First half: low DAC_data[i+BitMapSize/2] = 255; // Second half: high } break; case 6: #ifdef DEBUG printf("Waveform: %03d - Sawtooth (falling)\n",_value); #endif for (i=0; i<(BitMapSize); i++) { DAC_data[i] = 32-i; } break; case 7: #ifdef DEBUG printf("Waveform: %03d - Sawtooth (offset + falling)\n",_value); #endif for (i=0; i<(BitMapSize/4); i++) { DAC_data[i] = i*4; // First quarter slope up, gradient = 4 DAC_data[i+BitMapSize*1/4] = 255-i*4/3; // Second quarter slope down, gradient = 4/3 DAC_data[i+BitMapSize*2/4] = 170-i*4/3; // Third quarter slope down, gradient = 4/3 DAC_data[i+BitMapSize*3/4] = 85-i*4/3; // Last quarter slope down, gradient = 4/3 } break; case 8: #ifdef DEBUG printf("Waveform: %03d - Triangle\n",_value); #endif for (i=0; i<(BitMapSize/2); i++){ DAC_data[i] = i*2; // First half: slope up DAC_data[i+BitMapSize/2] = 255-i*2; // Second half: slope down } break; case 9: #ifdef DEBUG printf("Waveform: %03d - Sawtooth (offset + rising)\n",_value); #endif for (i=0; i<(BitMapSize/4); i++) { DAC_data[i] = i*4/3; // First quarter slope up, gradient = 4/3 DAC_data[i+BitMapSize*1/4] = 85+i*4/3; // Second quarter slope down,, gradient = 4/3 DAC_data[i+BitMapSize*2/4] = 170+i*4/3; // Third quarter slope down, gradient = 4/3 DAC_data[i+BitMapSize*3/4] = 255-i*4; // Last quarter slope down,, gradient = 4 } break; case 10: printf("Waveform: %03d - Sawtooth (rising)\n",_value); for (i=0; i<(BitMapSize); i++) { DAC_data[i] = i; } break; } NixieBuffer[0] = _value % 10 ; // First Nixie ( 1's ) _value /= 10 ; // finished with _value, so ok to trash it. _value=>10's NixieBuffer[1] = _value % 10 ; // Second Nixie ( 10's ) _value /= 10 ; // _value=>100's NixieBuffer[2] = 10 ; // Blank Third Nixie ( 100's ) } static inline void cs_select() { asm volatile("nop \n nop \n nop"); gpio_put(PIN_CS, 0); // Active low asm volatile("nop \n nop \n nop"); } static inline void cs_deselect() { asm volatile("nop \n nop \n nop"); gpio_put(PIN_CS, 1); asm volatile("nop \n nop \n nop"); } static void MCP41010_write(int _data) { // Formats and trnsmits 16 bit data word to the MCP41010 digital potentiometer... uint8_t buff[2]; buff[0] = 0x11; // Control byte: Write to potentiometer #1 buff[1] = _data; // Data byte cs_select(); spi_write_blocking(SPI_PORT, buff, 2); cs_deselect(); } int main() { static const float blink_freq = 16000; // Reduce SM clock to keep flash visible... float blink_div = (float)clock_get_hz(clk_sys) / blink_freq; // ... calculate the required blink SM clock divider static const float rotary_freq = 16000; // Clock speed reduced to eliminate rotary encoder jitter... float rotary_div = (float)clock_get_hz(clk_sys) / rotary_freq; //... then calculate the required rotary encoder SM clock divider // TBD - clock speed should be set before the previous statements. set_sys_clock_khz(280000, true); // Overclocking the core by a factor of 2 allows 1MHz from DAC #ifdef DEBUG stdio_init_all(); // needed for printf #endif // This example will use SPI0 at 0.5MHz. spi_init(SPI_PORT, 500 * 1000); gpio_set_function(PIN_SCK, GPIO_FUNC_SPI); gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI); // Set up the GPIO pins... const uint Onboard_LED = PICO_DEFAULT_LED_PIN; // Debug use - intialise the Onboard LED... gpio_init(Onboard_LED); gpio_set_dir(Onboard_LED, GPIO_OUT); // Initialise Nixie cathodes... for ( uint i = 0; i < sizeof(NixieCathodes) / sizeof( NixieCathodes[0]); i++ ) { gpio_init(NixieCathodes[i]); gpio_set_dir(NixieCathodes[i], GPIO_OUT); // Set as output } // Initialise Nixe anodes... for ( uint i = 0; i < sizeof(NixieAnodes) / sizeof( NixieAnodes[0]); i++ ) { gpio_init(NixieAnodes[i]); gpio_set_dir(NixieAnodes[i], GPIO_OUT); // Set as output } // Initialise rotary encoder... for ( uint i = 0; i < sizeof(RotaryEncoder) / sizeof( EncoderPorts[0]); i++ ) { gpio_init(EncoderPorts[i]); gpio_set_dir(EncoderPorts[i], GPIO_IN); // Set as input gpio_pull_up(EncoderPorts[i]); // Enable pull up } // Initialise 2-way switch inputs... gpio_init(SW_2way_1); gpio_set_dir(SW_2way_1, GPIO_IN); gpio_pull_up(SW_2way_1); // Initialise 3-way switch inputs... gpio_init(SW_3way_1); gpio_set_dir(SW_3way_1, GPIO_IN); gpio_pull_up(SW_3way_1); gpio_init(SW_3way_2); gpio_set_dir(SW_3way_2, GPIO_IN); gpio_pull_up(SW_3way_2); // SPI chip select is active-low, so we'll initialise it to a driven-high state... gpio_init(PIN_CS); gpio_set_dir(PIN_CS, GPIO_OUT); gpio_put(PIN_CS, 1); RotaryEncoder my_encoder(16, rotary_freq); // the A of the rotary encoder is connected to GPIO 16, B to GPIO 17 // Confirm memory alignment #ifdef DEBUG printf("Confirm memory alignment...\nBeginning: %x", &DAC_data[0]); printf("\nFirst: %x", &DAC_data[1]); printf("\nSecond: %x\n", &DAC_data[2]); int tmp = BitMapSize; printf("Size (bytes): %d\n\n",tmp); #endif // Set up the State machines... PIO pio = pio0; uint offset = pio_add_program(pio, &pio_blink_program); blink_forever my_blinker(pio, 0, offset, 25, blink_freq, blink_div); // SM0=>onboard LED DMAtoDAC_channel DataChannel; // Create DMAtoDAC_channel object // Create a repeating timer that calls Repeating_Timer_Callback. // If the delay is > 0 then this is the delay between the previous callback ending and the next starting. If the delay is negative // then the next call to the callback will be exactly 7ms after the start of the call to the last callback. struct repeating_timer timer; add_repeating_timer_ms(-7, Repeating_Timer_Callback, NULL, &timer); // 7ms - Short enough to prevent Nixie tube flicker // Long enough to prevent Nixie tube bluring my_encoder.set_Frequency(50); // Default: 100Hz my_encoder.set_WaveForm(0); // Default: Sine wave my_encoder.set_Level(50); // Default: 50% UpdateReq = 0b0111; // Set flags to load all default values while (true) { // Infinite loop if (UpdateReq) { // Falls through here when any of the rotary encoder values change... if (UpdateReq & 0b010) { // Frequency has changed NixieVal = my_encoder.get_Frequency(); // Value in range 0->999 Frequency = NixieVal; if (SW_2way != 0) { Frequency *= 1000; } // Scale by 1K if required DataChannel.Set_Frequency(Frequency); NixieBuffer[0] = NixieVal % 10 ; // First Nixie ( 1's ) NixieVal /= 10 ; // finished with NixieVal, so ok to trash it. NixieVal=>10's NixieBuffer[1] = NixieVal % 10 ; // Second Nixie ( 10's ) NixieVal /= 10 ; // NixieVal=>100's NixieBuffer[2] = NixieVal % 10 ; // Third Nixie ( 100's ) } if (UpdateReq & 0b100) { // Waveform has changed NixieVal = my_encoder.get_WaveForm(); WaveForm_update(NixieVal); NixieBuffer[0] = NixieVal % 10 ; // First Nixie ( 1's ) NixieVal /= 10 ; // finished with NixieVal, so ok to trash it. NixieVal=>10's NixieBuffer[1] = NixieVal % 10 ; // Second Nixie ( 10's ) NixieVal /= 10 ; // NixieVal=>100's NixieBuffer[2] = 10 ; // Blank Third Nixie ( 100's ) } if (UpdateReq & 0b001) { // Level has changed NixieVal = my_encoder.get_Level(); ScaledVal = NixieVal*255/99; // Scale the level. Display: 0->99 - Potentiometer: 0->255 #ifdef DEBUG printf("Level: %02d%% Level(Abs): %d\n",NixieVal,ScaledVal); #endif MCP41010_write(ScaledVal); // Send over SPI to digital potentiometer NixieBuffer[0] = NixieVal % 10 ; // First Nixie ( 1's ) NixieVal /= 10 ; // finished with teNixieValmp, so ok to trash it. NixieVal=>10's NixieBuffer[1] = NixieVal % 10 ; // Second Nixie ( 10's ) NixieVal /= 10 ; // NixieVal=>100's NixieBuffer[2] = 10 ; // Blank Third Nixie ( 100's ) } UpdateReq = 0; // All up to date, so clear the flag } // Get 2 way toggle switch status... SW_2way = gpio_get(SW_2way_1); // True=KHz, False=Hz if (SW_2way != Last_SW_2way) { #ifdef DEBUG if (SW_2way == 0) { printf("Frequency: Hz\n"); } else { printf("Frequency: KHz\n"); } #endif Last_SW_2way = SW_2way; UpdateReq = 0b010; // Force frequency update to load new value to DAC + SM } // Get 3 way toggle switch status... SW_3way = (gpio_get(SW_3way_1)<<1) + (gpio_get(SW_3way_2)); if (SW_3way != Last_SW_3way) { switch (SW_3way) { case 0b010: // SW=>Top position #ifdef DEBUG printf("Frequency: %03d Hz\n",my_encoder.get_Frequency()); #endif break; case 0b011: // SW=>Middle position WaveForm_update(my_encoder.get_WaveForm()); break; case 0b001: // SW=>Bottom position #ifdef DEBUG printf("Level: %02d\n",my_encoder.get_Level()); #endif break; } Last_SW_3way = SW_3way; } } }