kopia lustrzana https://github.com/hoglet67/RGBtoHDMI
408 wiersze
16 KiB
VHDL
408 wiersze
16 KiB
VHDL
|
----------------------------------------------------------------------------------
|
||
|
-- Engineer: David Banks
|
||
|
--
|
||
|
-- Create Date: 15/7/2018
|
||
|
-- Module Name: RGBtoHDMI CPLD
|
||
|
-- Project Name: RGBtoHDMI
|
||
|
-- Target Devices: XC9572XL
|
||
|
--
|
||
|
-- Version: 1.0
|
||
|
--
|
||
|
----------------------------------------------------------------------------------
|
||
|
library ieee;
|
||
|
use ieee.std_logic_1164.all;
|
||
|
use ieee.numeric_std.all;
|
||
|
|
||
|
entity RGBtoHDMI is
|
||
|
Port (
|
||
|
-- From RGB Connector
|
||
|
R3_I: in std_logic;
|
||
|
G3_I: in std_logic;
|
||
|
B3_I: in std_logic;
|
||
|
R2_I: in std_logic;
|
||
|
G2_I: in std_logic;
|
||
|
B2_I: in std_logic;
|
||
|
R1_I: in std_logic;
|
||
|
G1_I: in std_logic;
|
||
|
B1_I: in std_logic;
|
||
|
R0_I: in std_logic;
|
||
|
G0_I: in std_logic;
|
||
|
B0_I: in std_logic;
|
||
|
|
||
|
csync_I: in std_logic;
|
||
|
vsync_I: in std_logic;
|
||
|
|
||
|
analog: inout std_logic;
|
||
|
|
||
|
-- From Pi
|
||
|
clk: in std_logic;
|
||
|
sp_clk: in std_logic;
|
||
|
sp_clken: in std_logic;
|
||
|
sp_data: in std_logic;
|
||
|
|
||
|
-- To PI GPIO
|
||
|
quad: out std_logic_vector(11 downto 0);
|
||
|
psync: out std_logic;
|
||
|
csync: out std_logic;
|
||
|
|
||
|
-- User interface
|
||
|
version: in std_logic
|
||
|
);
|
||
|
end RGBtoHDMI;
|
||
|
|
||
|
architecture Behavorial of RGBtoHDMI is
|
||
|
|
||
|
subtype counter_type is unsigned(6 downto 0);
|
||
|
|
||
|
-- Version number: Design_Major_Minor
|
||
|
-- Design: 0 = BBC CPLD
|
||
|
-- 1 = Alternative CPLD
|
||
|
-- 2 = Atom CPLD
|
||
|
-- 3 = six bit CPLD (if required);
|
||
|
-- 4 = RGB CPLD (TTL)
|
||
|
-- C = RGB CPLD (Analog)
|
||
|
constant VERSION_NUM_RGB_TTL : std_logic_vector(11 downto 0) := x"485";
|
||
|
constant VERSION_NUM_RGB_ANALOG : std_logic_vector(11 downto 0) := x"C85";
|
||
|
|
||
|
-- Sampling points
|
||
|
constant INIT_SAMPLING_POINTS : std_logic_vector(25 downto 0) := "00000000011011011011011011";
|
||
|
|
||
|
signal shift_R : std_logic_vector(3 downto 0);
|
||
|
signal shift_G : std_logic_vector(3 downto 0);
|
||
|
signal shift_B : std_logic_vector(3 downto 0);
|
||
|
|
||
|
signal csync1 : std_logic;
|
||
|
signal csync2 : std_logic;
|
||
|
signal last : std_logic;
|
||
|
|
||
|
signal csync_counter : unsigned(1 downto 0);
|
||
|
|
||
|
-- The sampling counter runs at 96MHz
|
||
|
-- - In modes 0..6 it is 6x the pixel clock
|
||
|
-- - In mode 7 it is 8x the pixel clock
|
||
|
--
|
||
|
-- It serves several purposes:
|
||
|
-- 1. Counts the 12us between the rising edge of nCSYNC and the first pixel
|
||
|
-- 2. Counts within each pixel (bits 0, 1, 2)
|
||
|
-- 3. Counts counts pixels within a quad pixel (bits 3 and 4)
|
||
|
-- 4. Handles double buffering of alternative quad pixels (bit 5)
|
||
|
--
|
||
|
-- At the moment we don't count pixels with the line, the Pi does that
|
||
|
signal counter : counter_type;
|
||
|
|
||
|
-- Sample point register;
|
||
|
--
|
||
|
-- In Mode 7 each pixel lasts 8 clocks (96MHz / 12MHz). The original
|
||
|
-- pixel clock is a regenerated 6Mhz clock, and both edges are used.
|
||
|
-- Due to the way it is generated, there are three distinct phases,
|
||
|
-- each with different rising/falling edge speeds, hence six sampling
|
||
|
-- points are used.
|
||
|
--
|
||
|
-- In Modes 0..6 each pixel lasts 6 clocks (96MHz / 16MHz). The original
|
||
|
-- pixel clock is a clean 16Mhz clock, so only one sample point is needed.
|
||
|
-- To achieve this, all six values are set to be the same. This minimises
|
||
|
-- the logic in the CPLD.
|
||
|
signal sp_reg : std_logic_vector(25 downto 0) := INIT_SAMPLING_POINTS;
|
||
|
|
||
|
-- Break out of sp_reg
|
||
|
signal invert : std_logic;
|
||
|
signal rate : std_logic_vector(1 downto 0);
|
||
|
signal delay : unsigned(1 downto 0);
|
||
|
signal half : std_logic;
|
||
|
signal offset_A : std_logic_vector(2 downto 0);
|
||
|
signal offset_B : std_logic_vector(2 downto 0);
|
||
|
signal offset_C : std_logic_vector(2 downto 0);
|
||
|
signal offset_D : std_logic_vector(2 downto 0);
|
||
|
signal offset_E : std_logic_vector(2 downto 0);
|
||
|
signal offset_F : std_logic_vector(2 downto 0);
|
||
|
|
||
|
-- Pipelined offset mux output
|
||
|
signal offset : std_logic_vector(2 downto 0);
|
||
|
|
||
|
-- Index to cycle through offsets A..F
|
||
|
signal index : std_logic_vector(2 downto 0);
|
||
|
|
||
|
-- Sample pixel on next clock; pipelined to reduce the number of product terms
|
||
|
signal sample : std_logic;
|
||
|
|
||
|
-- New sample available, toggle psync on next cycle
|
||
|
signal toggle : std_logic;
|
||
|
|
||
|
-- RGB Input Mux
|
||
|
signal R3 :std_logic;
|
||
|
signal G3 :std_logic;
|
||
|
signal B3 :std_logic;
|
||
|
signal R2 :std_logic;
|
||
|
signal G2 :std_logic;
|
||
|
signal B2 :std_logic;
|
||
|
|
||
|
signal divider : std_logic;
|
||
|
signal mux : std_logic;
|
||
|
signal mux_sync : std_logic;
|
||
|
signal psync_pulse : std_logic;
|
||
|
signal clamp_output : std_logic;
|
||
|
signal clamp_pulse : std_logic;
|
||
|
signal clamp_enable : std_logic;
|
||
|
|
||
|
signal swap_bits_R :std_logic;
|
||
|
signal swap_bits_G :std_logic;
|
||
|
signal swap_bits_B :std_logic;
|
||
|
|
||
|
begin
|
||
|
offset_A <= sp_reg(2 downto 0);
|
||
|
offset_B <= sp_reg(5 downto 3);
|
||
|
offset_C <= sp_reg(8 downto 6);
|
||
|
offset_D <= sp_reg(11 downto 9);
|
||
|
offset_E <= sp_reg(14 downto 12);
|
||
|
offset_F <= sp_reg(17 downto 15);
|
||
|
half <= sp_reg(18);
|
||
|
delay <= unsigned(sp_reg(20 downto 19));
|
||
|
rate <= sp_reg(22 downto 21);
|
||
|
invert <= sp_reg(23);
|
||
|
divider <= sp_reg(24);
|
||
|
mux <= sp_reg(25);
|
||
|
|
||
|
mux_sync <= vsync_I when mux = '1' and version = '1' else csync_I;
|
||
|
|
||
|
-- sp_data is overloaded as clamp on/off when rate = 00 or 01 and multiplex on/off when rate = 10 or 11
|
||
|
-- rate = 00 is 3 bit capture with sp_data = clamp on/off
|
||
|
-- rate = 01 is 6 bit capture with sp_data = clamp on/off
|
||
|
-- rate = 10 and sp_data = 0 is 6 bit capture with 3 bit to 4 level encoding (clamp not usable in 4 level mode)
|
||
|
-- rate = 10 and sp_data = 1 is 6 bit capture with multiplex enabled for 12 bit capture
|
||
|
-- rate = 11 and mux = 0 is 12 bit capture
|
||
|
-- rate = 11 and mux = 1 is 9 bit capture using vsync_I as replacement G1 bit (will work on 8 bit board)
|
||
|
|
||
|
swap_bits_G <= vsync_I when rate = "10" and sp_data = '0' else '0';
|
||
|
swap_bits_B <= B1_I when rate = "10" and sp_data = '0' else '0';
|
||
|
swap_bits_R <= R1_I when rate = "10" and sp_data = '0' else '0';
|
||
|
|
||
|
G3 <= G2_I when swap_bits_G = '1' else G3_I;
|
||
|
G2 <= G3_I when swap_bits_G = '1' else G2_I;
|
||
|
|
||
|
B3 <= B2_I when swap_bits_B = '1' else B3_I;
|
||
|
B2 <= B3_I when swap_bits_B = '1' else B2_I;
|
||
|
|
||
|
R3 <= R2_I when swap_bits_R = '1' else R3_I;
|
||
|
R2 <= R3_I when swap_bits_R = '1' else R2_I;
|
||
|
|
||
|
-- Shift the bits in LSB first
|
||
|
process(sp_clk)
|
||
|
begin
|
||
|
if rising_edge(sp_clk) then
|
||
|
if sp_clken = '1' then
|
||
|
sp_reg <= sp_data & sp_reg(sp_reg'left downto sp_reg'right + 1);
|
||
|
end if;
|
||
|
end if;
|
||
|
end process;
|
||
|
|
||
|
process(clk)
|
||
|
begin
|
||
|
if rising_edge(clk) then
|
||
|
|
||
|
-- synchronize CSYNC to the sampling clock
|
||
|
-- if link fitted sync is inverted. If +ve vsync connected to link & +ve hsync to S then generate -ve composite sync
|
||
|
csync1 <= mux_sync xor invert;
|
||
|
|
||
|
-- De-glitch CSYNC
|
||
|
-- csync1 is the possibly glitchy input
|
||
|
-- csync2 is the filtered output
|
||
|
if csync1 = csync2 then
|
||
|
-- output same as input, reset the counter
|
||
|
csync_counter <= to_unsigned(0, csync_counter'length);
|
||
|
else
|
||
|
-- output different to input
|
||
|
csync_counter <= csync_counter + 1;
|
||
|
-- if the difference lasts for N-1 cycles, update the output
|
||
|
if csync_counter = 3 then
|
||
|
csync2 <= csync1;
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
-- Counter is used to find sampling point for first pixel
|
||
|
last <= csync2;
|
||
|
-- reset counter on the rising edge of csync
|
||
|
if last = '0' and csync2 = '1' then
|
||
|
counter(6 downto 3) <= "10" & delay;
|
||
|
if half = '1' then
|
||
|
counter(2 downto 0) <= "000";
|
||
|
elsif divider = '1' then
|
||
|
counter(2 downto 0) <= "100";
|
||
|
else
|
||
|
counter(2 downto 0) <= "011";
|
||
|
end if;
|
||
|
elsif divider = '1' or counter(2 downto 0) /= 5 then
|
||
|
if counter(counter'left) = '1' then
|
||
|
counter <= counter + 1;
|
||
|
else
|
||
|
counter(counter'left - 1 downto 0) <= counter(counter'left - 1 downto 0) + 1;
|
||
|
end if;
|
||
|
else
|
||
|
if counter(counter'left) = '1' then
|
||
|
counter <= counter + 3;
|
||
|
else
|
||
|
counter(counter'left - 1 downto 0) <= counter(counter'left - 1 downto 0) + 3;
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
-- Sample point offset index
|
||
|
if counter(counter'left) = '1' then
|
||
|
index <= "000";
|
||
|
else
|
||
|
-- so index offset changes at the same time counter wraps 7->0
|
||
|
-- so index offset changes at the same time counter wraps ->0
|
||
|
if (divider = '0' and counter(2 downto 0) = 4) or (divider = '1' and counter(2 downto 0) = 6) then
|
||
|
case index is
|
||
|
when "000" =>
|
||
|
index <= "001";
|
||
|
when "001" =>
|
||
|
index <= "010";
|
||
|
when "010" =>
|
||
|
index <= "011";
|
||
|
when "011" =>
|
||
|
index <= "100";
|
||
|
when "100" =>
|
||
|
index <= "101";
|
||
|
when others =>
|
||
|
index <= "000";
|
||
|
end case;
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
-- Sample point offset
|
||
|
case index is
|
||
|
when "000" =>
|
||
|
offset <= offset_B;
|
||
|
when "001" =>
|
||
|
offset <= offset_C;
|
||
|
when "010" =>
|
||
|
offset <= offset_D;
|
||
|
when "011" =>
|
||
|
offset <= offset_E;
|
||
|
when "100" =>
|
||
|
offset <= offset_F;
|
||
|
when others =>
|
||
|
offset <= offset_A;
|
||
|
end case;
|
||
|
|
||
|
-- sample/shift control
|
||
|
if counter(counter'left) = '0' and counter(2 downto 0) = unsigned(offset) then
|
||
|
sample <= '1';
|
||
|
else
|
||
|
sample <= '0';
|
||
|
end if;
|
||
|
|
||
|
if sample = '1' then
|
||
|
if rate = "11" and sp_data = '1' then
|
||
|
shift_R <= R1_I & G2_I & B3_I & B0_I; -- 12 bpp
|
||
|
elsif rate = "11" and sp_data = '0' then
|
||
|
shift_R <= R1_I & G2_I & B3_I & B3_I; -- 9 bpp
|
||
|
elsif rate = "10" and sp_data = '1' then
|
||
|
shift_R <= shift_B(3) & G2_I & B3_I & shift_B(0); -- 6x2 multiplex 12 bpp
|
||
|
elsif rate = "10" and sp_data = '0' then
|
||
|
shift_R <= R2 & R3 & shift_R(3 downto 2); -- 6 bpp 4 level
|
||
|
elsif rate = "01" then
|
||
|
shift_R <= R2_I & R3_I & shift_R(3 downto 2); -- 6 bpp
|
||
|
else
|
||
|
shift_R <= R3_I & shift_R(3 downto 1); -- 3 bpp
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
-- G Sample/shift register
|
||
|
if sample = '1' then
|
||
|
if rate = "11" and sp_data = '1' then
|
||
|
shift_G <= R2_I & G3_I & G0_I & B1_I; -- 12 bpp
|
||
|
elsif rate = "11" and sp_data = '0' then
|
||
|
shift_G <= R2_I & G3_I & G3_I & B1_I; -- 9 bpp
|
||
|
elsif rate = "10" and sp_data = '1' then
|
||
|
shift_G <= R2_I & G3_I & shift_R(2) & shift_R(1); -- 6x2 multiplex 12 bpp
|
||
|
elsif rate = "10" and sp_data = '0' then
|
||
|
shift_G <= G2 & G3 & shift_G(3 downto 2); -- 6 bpp 4 level
|
||
|
elsif rate = "01" then
|
||
|
shift_G <= G2_I & G3_I & shift_G(3 downto 2); -- 6 bpp
|
||
|
else
|
||
|
shift_G <= G3_I & shift_G(3 downto 1); -- 3 bpp
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
-- B Sample/shift register
|
||
|
if sample = '1' then
|
||
|
if rate = "11" and sp_data = '1' then
|
||
|
shift_B <= R3_I & R0_I & G1_I & B2_I; -- 12 bpp
|
||
|
elsif rate = "11" and sp_data = '0' then
|
||
|
shift_B <= R3_I & R3_I & vsync_I & B2_I; -- 9 bpp with G1 on vsync_I
|
||
|
elsif rate = "10" and sp_data = '1' then
|
||
|
shift_B <= R3_I & shift_G(3) & shift_G(2) & B2_I; -- 6x2 multiplex 12 bpp
|
||
|
elsif rate = "10" and sp_data = '0' then
|
||
|
shift_B <= B2 & B3 & shift_B(3 downto 2); -- 6 bpp 4 level
|
||
|
elsif rate = "01" then
|
||
|
shift_B <= B2_I & B3_I & shift_B(3 downto 2); -- 6 bpp
|
||
|
else
|
||
|
shift_B <= B3_I & shift_B(3 downto 1); -- 3 bpp
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
-- Pipeline when to update the quad
|
||
|
if counter(counter'left) = '0' and (
|
||
|
(rate = "00" and counter(4 downto 0) = 0) or -- single
|
||
|
(rate = "01" and counter(3 downto 0) = 0) or -- double
|
||
|
(rate = "10" and counter(3 downto 0) = 0) or -- double
|
||
|
(rate = "11" and counter(2 downto 0) = 0) ) then -- quadruple
|
||
|
-- toggle is asserted in cycle 1
|
||
|
toggle <= '1';
|
||
|
else
|
||
|
toggle <= '0';
|
||
|
end if;
|
||
|
|
||
|
-- Output quad register
|
||
|
if version = '0' then
|
||
|
if analog = '1' then
|
||
|
quad <= VERSION_NUM_RGB_ANALOG;
|
||
|
else
|
||
|
quad <= VERSION_NUM_RGB_TTL;
|
||
|
end if;
|
||
|
elsif counter(counter'left) = '1' then
|
||
|
quad <= (others => '0');
|
||
|
elsif toggle = '1' then
|
||
|
-- quad changes at the start of cycle 2
|
||
|
quad(11) <= shift_B(3);
|
||
|
quad(10) <= shift_G(3);
|
||
|
quad(9) <= shift_R(3);
|
||
|
quad(8) <= shift_B(2);
|
||
|
quad(7) <= shift_G(2);
|
||
|
quad(6) <= shift_R(2);
|
||
|
quad(5) <= shift_B(1);
|
||
|
quad(4) <= shift_G(1);
|
||
|
quad(3) <= shift_R(1);
|
||
|
quad(2) <= shift_B(0);
|
||
|
quad(1) <= shift_G(0);
|
||
|
quad(0) <= shift_R(0);
|
||
|
end if;
|
||
|
|
||
|
-- Output a skewed version of psync
|
||
|
if version = '0' then
|
||
|
psync <= vsync_I;
|
||
|
elsif counter(counter'left) = '1' then
|
||
|
psync <= '0';
|
||
|
elsif counter(2 downto 0) = 2 then -- comparing with N gives N-1 cycles of skew
|
||
|
if rate = "00" then
|
||
|
psync <= counter(5); -- normal
|
||
|
elsif rate = "11" then
|
||
|
psync <= counter(3); -- quadruple
|
||
|
else
|
||
|
psync <= counter(4); -- double
|
||
|
end if;
|
||
|
end if;
|
||
|
end if;
|
||
|
end process;
|
||
|
|
||
|
csync <= csync2; -- output the registered version to save a macro-cell
|
||
|
|
||
|
-- csync2 is cleaned but delayed so OR with csync1 to remove delay on trailing edge of sync pulse
|
||
|
-- clamp not usable in 4 LEVEL mode (rate = 10) or 8/12 bit mode (rate = 11) so use as multiplex signal instead
|
||
|
clamp_pulse <= not(sample) when rate = "10" or rate = "11" else not(csync1 or csync2);
|
||
|
clamp_enable <= '1' when mux = '1' else version;
|
||
|
-- spdata is overloaded as clamp on/off
|
||
|
analog <= 'Z' when clamp_enable = '0' else clamp_pulse and sp_data;
|
||
|
|
||
|
end Behavorial;
|