QRP_LABS_WSPR/WWVB_PPS.ino

494 wiersze
15 KiB
Arduino
Czysty Zwykły widok Historia

2023-02-28 21:04:25 +00:00
/*
* WWVB experiments
*
*/
#include <LCD5110_Basic.h>
LCD5110 LCD( 2,3,4,6,5 );
extern uint8_t SmallFont[];
extern uint8_t MediumNumbers[];
extern uint8_t BigNumbers[];
#define WWVB_IN 7
#define PPS_OUT 8
2023-03-03 21:38:07 +00:00
// if the nano 16mhz clock can be compensated for when the wwvb signal is absent such that we gain or loose less than
// 1/2 second then this ( the whole program algorithms ) should work ok.
//long tm_correct_count = 119000; // add or sub one ms for time correction per this many ms
long tm_correct_count = 30000; // set up as if the 16mhz xtal is actually faster than that
int8_t tm_correction = -1; // 1 or -1 time correction
2023-02-28 21:04:25 +00:00
long time_adjust;
int gmon = 1,gday = 1,gyr = 1,ghr,gmin;
int tot_days = 1;
uint16_t leap = 1;
uint64_t wwvb_data, wwvb_sync, wwvb_errors;
uint8_t DST; // daylight savings bit
2023-03-03 21:38:07 +00:00
uint8_t gsec;
uint8_t msg_que;
int phase; // where wwvb falling occurs in our current second
int tot_phase; // total corrections applied via sync up
2023-02-28 21:04:25 +00:00
void setup() {
pinMode(WWVB_IN, INPUT_PULLUP); // sample wwvb receiver signal
pinMode(PPS_OUT, OUTPUT);
Serial.begin(9600);
LCD.InitLCD();
LCD.setFont(SmallFont);
LCD.print("WWVB PPS TEST",CENTER,8*0);
delay( 5000 );
LCD.clrRow(0);
}
void loop() {
static unsigned long tm;
if( tm != millis() ){
tm = millis();
wwvb_sample2(tm);
}
2023-03-03 21:38:07 +00:00
if( gsec == msg_que ){
switch( msg_que ){
case 0: send_gga(); ++msg_que; break;
case 1: send_gsv(); ++msg_que; break;
case 2: send_gsa(); ++msg_que; break;
case 3: send_rmc(); msg_que = 0; break;
}
}
}
void send_gga(){
gps_puts( "$GPGGA," );
send_num( ghr ); send_num( gmin ); send_num( gsec );
gps_puts( ".20," );
gps_puts( "4426.8053,N,"); // lat
gps_puts( "06931.4612,W,"); // long
gps_puts( "1,"); // fix
gps_puts( "04,"); // num sats
gps_puts( "1.5,"); // horizontal something
gps_puts( "96.8,M," ); // altitude
gps_puts( "-34.0,M," );
gps_puts( ",*" );
}
void send_gsv(){
gps_puts( "$GPGSV," );
}
void send_gsa(){
gps_puts( "$GPGSA," );
}
void send_rmc(){
gps_puts( "$GPRMC," );
}
void send_num( int val ){
char buf[30];
if( val < 10 ) gps_putch('0');
itoa( val, buf, 10 );
gps_puts( buf );
}
void gps_putch( unsigned char c ){
static uint8_t crc;
if( c == '$' ) crc = 0;
else if( c != '*' ) crc ^= c;
Serial.write( c );
if( c == '*' ){
send_hex( crc );
Serial.println();
}
}
void gps_puts( char * p ){
char c;
while( ( c = *p++ ) ) gps_putch( c );
}
void send_hex( uint8_t d ){
char buf[30];
itoa( d, buf, 16 );
buf[0] = toupper( buf[0] );
buf[1] = toupper( buf[1] );
gps_puts( buf );
2023-02-28 21:04:25 +00:00
}
2023-03-03 21:38:07 +00:00
2023-02-28 21:04:25 +00:00
void calc_date(){ // from total days and leap flag
const int cal[2][12] =
{ 31,28,31,30,31,30,31,31,30,31,30,31,
31,29,31,30,31,30,31,31,30,31,30,31 };
int i,d;
d = tot_days;
for( i = 0; i < 12; ++i ){
if( d <= cal[leap][i] ) break;
d -= cal[leap][i];
}
gmon = i + 1;
gday = d;
}
// WWVB receiver in a fringe area - integrate the signal to remove noise
// Although it probably makes more sense to dump the integrator 10 times per second, here we use 8.
// sample each millisecond, sum 100 or 150 samples , decide if low or high, shift into temp variable
// at end of 1 second( 8 bits), decide if temp has a 1, 0, or sync. Shift into 64 bit data and sync variables.
// when the sync variable contains the magic number, decode the 64 bit data.
// each second starts with a low signal and ends with a high signal
// much like software sampling rs232 start and stop bits.
// this routine runs fast by design until it locks on the wwvb signal( or slow depending upon point of view )
2023-03-03 21:38:07 +00:00
// for this application, we attempt to prevent it from loosing seconds when syncing
2023-02-28 21:04:25 +00:00
void wwvb_sample2(unsigned long t){
static unsigned long old_t;
int loops;
uint8_t b,s,e;
static uint8_t wwvb_clk, wwvb_sum, wwvb_tmp, wwvb_count; // data decoding
const uint8_t counts[8] = { 100,100,150,150,150,150,100,100 }; // total of 1000 ms
static uint8_t secs,errors,early,late;
static uint8_t dither = 4; // quick sync, adjusts to 1 when signal is good
2023-03-03 21:38:07 +00:00
static int enable_dither; // enabled when think have a good wwvb signal
2023-02-28 21:04:25 +00:00
char ch[2];
loops = t - old_t;
old_t = t;
if( loops > 10 ) loops = 1; // startup
while( loops-- ){ // repeat for any missed milliseconds
// adjust for 16mhz millis() error
2023-03-03 21:38:07 +00:00
if( ++time_adjust >= tm_correct_count && wwvb_clk > 2 ){
2023-02-28 21:04:25 +00:00
time_adjust = 0;
wwvb_clk += tm_correction;
}
if( digitalRead(WWVB_IN) == LOW ) ++wwvb_sum;
if( --wwvb_clk == 0 ){ // end of period, dump integrator
b = ( wwvb_sum > (counts[wwvb_count] >> 1) ) ? 0 : 128;
wwvb_tmp >>= 1;
wwvb_tmp |= b;
wwvb_sum = 0;
// 8 dumps of the integrator is one second, decode this bit
wwvb_count++;
wwvb_count &= 7;
if( wwvb_count == 0 ) digitalWrite( PPS_OUT,HIGH);
if( wwvb_count == 1 ) digitalWrite( PPS_OUT,LOW);
2023-03-03 21:38:07 +00:00
if( wwvb_count == 3 ) gsec = secs; // que serial messages
2023-02-28 21:04:25 +00:00
wwvb_clk = counts[wwvb_count]; // 100 100 150 150 150 150 100 100
// decode 0 1 sync stop should be high
if( wwvb_count == 0 ){ // decode time
// clocks late or early, just dither them back and forth across the falling edge
// when not in sync, more 1's than 0's are detected and this slips in time.
2023-03-03 21:38:07 +00:00
// attempt to prevent that by enable flag
2023-02-28 21:04:25 +00:00
if( wwvb_tmp != 0xff && wwvb_tmp != 0x00 ){
2023-03-03 21:38:07 +00:00
enable_dither += count_zeros( wwvb_tmp );
2023-02-28 21:04:25 +00:00
if( digitalRead(WWVB_IN) == 0 ){
++late; // sampling late
2023-03-03 21:38:07 +00:00
if( enable_dither > 0 ){
wwvb_clk -= dither; // adjust sample to earlier
phase -= dither;
tot_phase -= dither;
if( phase < -700 ) phase += 1000;
}
2023-02-28 21:04:25 +00:00
}
else{
++early; // need to sample later
2023-03-03 21:38:07 +00:00
if( enable_dither > 0 ){
wwvb_clk += dither; // longer clock
phase += dither;
tot_phase += dither;
if( phase > 700 ) phase -= 1000; // may have lost second if due to slip
}
2023-02-28 21:04:25 +00:00
}
}
// decode
// 11111100 is a zero, 11110000 is a one, 11000000 is a sync
b = 0; s = 0; e = 1; // assume it is an error
pbin( wwvb_tmp );
// strict decode works well, use loose decode for common bit errors ?
if( wwvb_tmp == 0xfc || wwvb_tmp == 0xfd ) e = 0, b = 0;
if( wwvb_tmp == 0xf0 ) e = 0, b = 1;
if( wwvb_tmp == 0xc0 ) e = 0, s = 1;
ch[0] = 'e'; ch[1] = 0;
if( e == 0 ){
if( s == 1 ) ch[0] = 'S';
else if( b == 1 ) ch[0] = '1';
else ch[0] = '0';
}
LCD.print(ch,LEFT,0);
if( e ) ++errors;
wwvb_data <<= 1; wwvb_data |= b; // shift 64 bits data
wwvb_sync <<= 1; wwvb_sync |= s; // sync
wwvb_errors <<= 1; wwvb_errors |= e; // errors
// magic 64 bits of sync ( looking at 60 seconds of data with 4 seconds of the past minute )
// xxxx1000000001 0000000001 0000000001 0000000001 0000000001 0000000001
// wwvb_sync &= 0x0fffffffffffffff; // mask off the old bits from previous minute
// instead of masking, use the old bits to see the double sync bits at 0 of this minute
// and 59 seconds of the previous minute. This decodes at zero time.
if( wwvb_sync == 0b0001100000000100000000010000000001000000000100000000010000000001 ){
if( wwvb_errors == 0 ){ // decode if no bit errors
wwvb_decode();
secs = 59; // secs = 0 next statement
2023-03-03 21:38:07 +00:00
phase = 0;
2023-02-28 21:04:25 +00:00
}
}
2023-03-03 21:38:07 +00:00
//Serial.print( secs ); Serial.write(' ');
//if( secs == 29 || secs == 59 ) Serial.println();
2023-02-28 21:04:25 +00:00
LCD.setFont(MediumNumbers);
LCD.printNumI(secs,RIGHT,2*8,2,'0');
LCD.setFont(SmallFont);
2023-03-03 21:38:07 +00:00
LCD.printNumI( enable_dither,LEFT,4*8,4,' ');
2023-02-28 21:04:25 +00:00
if( ++secs >= 60 ){ // adjust dither each minute
dither = ( errors >> 4 ) + 1;
// will this work for both slow and fast 16 mhz clock?
2023-03-03 21:38:07 +00:00
// adjust correction for the 16 mhz nano clock
if( errors < 45 ){
tm_correct_count += tm_correction * (late - early); // ? which is correct ?
//tm_correct_count += tm_correction * (early - late);
2023-02-28 21:04:25 +00:00
if( tm_correct_count > 120000 ){
tm_correct_count = 119000;
tm_correction *= -1;
}
}
2023-03-03 21:38:07 +00:00
//Serial.print( errors ); Serial.write(' ');
//Serial.print( tm_correction); Serial.write(' ');
//Serial.println( tm_correct_count );
2023-02-28 21:04:25 +00:00
LCD.printNumI( tm_correct_count,LEFT,1*8,6,' ');
LCD.printNumI( tm_correction,8*6,1*8,2,' ');
2023-03-03 21:38:07 +00:00
LCD.printNumI(errors,RIGHT,1*8,2,' ');
LCD.printNumI( tot_phase,RIGHT,4*8,6,' ');
// LCD.printNumI( phase,LEFT,4*8,4,' ');
2023-02-28 21:04:25 +00:00
2023-03-03 21:38:07 +00:00
early = late = secs = errors = 0; // reset the stats for the next minute
if( enable_dither < -60 ) enable_dither = -60;
if( enable_dither > 0 ) enable_dither = 0;
2023-02-28 21:04:25 +00:00
if( wwvb_errors > 0 ) keep_time();
}
} // end decode time
} // end integration timer
} // loops - repeat for lost milliseconds if any
}
2023-03-03 21:38:07 +00:00
// did we receive a 1 or sync out of phase? Count zero's in a row. OR Check for valid data.
// 11100001 00111100 11110000
// check for valid data
int count_zeros( uint8_t val ){
int i;
uint8_t c;
static int last_i;
// rotate data until have xxxxxx01
for( i = 0; i < 8; ++i ){
c = 0;
if( val & 0x80 ) c = 1;
if( (val & 3) == 1 ) break;
val <<= 1; val |= c;
}
if( last_i != i ){ // check for constant rotation
last_i = i;
return -1;
}
if( val == 0b10000001 || val == 0b11100001 || val == 0b11111001 ) return 3;
if( val == 0b11000001 || val == 0b11110001 ) return 2;
if( val == 0b11111101 ) return 1;
return -1;
}
/***
uint8_t count_zeros( uint8_t val ){
uint8_t c1, c2;
int i;
c1 = 0; c2 = 0;
if( ( val & _BV(0) ) == 1 ){ // easy case
for( i = 0; i < 8; ++i ){
if( (val & _BV(i)) == 0 ) ++c1;
if( c1 && ( val & _BV(i) )) break; // found a 1 after the zero
}
if( c1 >= 4 ) return 1;
else return 0;
}
for( i = 0; i < 8; ++i ){
if( val & _BV(i) ) break;
++c1;
}
for( i = 7; i >= 0; --i ){
if( val & _BV(i) ) break;
++c2;
}
if( c1 + c2 >= 4 ) return 1;
return 0;
}
**/
2023-02-28 21:04:25 +00:00
void wwvb_decode(){ // WWVB transmits the data for the previous minute just ended
uint16_t tmp;
uint16_t tmp2;
uint16_t yr;
uint16_t hr;
uint16_t mn;
uint16_t dy;
uint8_t i;
//tmp2 = frame_sec;
//tmp = frame_msec; // capture milliseconds value before it is corrected so we can print it.
//++decodes;
yr = wwvb_decode2( 53, 0x1ff ); // year is 0 to 99
dy = wwvb_decode2( 33, 0xfff ); // day is 0 to 365/366
hr = wwvb_decode2( 18, 0x7f );
mn = wwvb_decode2( 8, 0xff );
leap = wwvb_decode2( 55, 0x1 );
DST = wwvb_decode2( 57, 0x1 ); // in effect bit ( using bit 58 gave wrong time for one day )
/***
if( ( mn & 1 ) == 0 ){ //last minute was even so just hit the 60 second mark in the frame
// only apply clock corrections in the middle of the two minute frame or may
// otherwise mess up the frame timing
if( frame_sec == 59 && frame_msec >= 500 ) ; // ok
else if( frame_sec == 60 && frame_msec < 500 ) ; // ok
else{ // way off, reset to the correct time
frame_sec = 60;
frame_msec = 0;
// FF = 0, ff = 0; // reset timing fudge factor
// clr_trends = 1; // the trend buckets will be incorrect now
}
}
****/
ghr = hr;
gmin = mn;
gyr = yr;
tot_days = dy;
calc_date();
keep_time(); // wwvb sends minute just ended info, so increment
//calc_date( );
//time_flags |= TS;
}
// wwvb fields all decode about the same way
uint16_t wwvb_decode2( uint8_t pos, uint16_t mask ){
uint16_t tmp;
uint16_t val;
tmp = ( wwvb_data >> ( 59 - pos ) ) & mask;
val = 0;
if( tmp & 0x800 ) val += 200;
if( tmp & 0x400 ) val += 100;
if( tmp & 0x100 ) val += 80;
if( tmp & 0x80 ) val += 40;
if( tmp & 0x40 ) val += 20;
if( tmp & 0x20 ) val += 10;
val += (tmp & 0xf);
return val;
}
void keep_time(){
if( ++gmin >= 60 ){
gmin = 0;
if( ++ghr >= 24 ){
ghr = 0;
++tot_days;
if( tot_days > 365 + leap ) ++gyr, tot_days = 1;
calc_date();
}
}
2023-03-03 21:38:07 +00:00
//p_fill( gmon,2 ); Serial.write('/');
//p_fill( gday,2 ); Serial.write('/');
//Serial.print("20"); p_fill(gyr,2); Serial.write(' '); Serial.write(' ');
//p_fill( ghr,2); Serial.write(':');
//p_fill( gmin,2 );
//Serial.println();
2023-02-28 21:04:25 +00:00
LCD.setFont(MediumNumbers);
LCD.printNumI(ghr,LEFT,2*8,2,'0');
LCD.printNumI(gmin,CENTER,2*8,2,'0');
LCD.setFont(SmallFont);
LCD.printNumI(gmon,0,5*8,2,'0');
LCD.print("/",3*6,5*8);
LCD.printNumI(gday,5*6,5*8,2,'0');
LCD.print("/",8*6,5*8);
LCD.printNumI(gyr,10*6,5*8,2,'0');
}
2023-03-03 21:38:07 +00:00
/***
2023-02-28 21:04:25 +00:00
void p_fill( int val, int digits ){ // zero fill printing
if( digits >= 4 && val < 1000 ) Serial.write('0');
if( digits >= 3 && val < 100 ) Serial.write('0');
if( digits >= 2 && val < 10 ) Serial.write('0');
Serial.print(val);
}
2023-03-03 21:38:07 +00:00
***/
2023-02-28 21:04:25 +00:00
void pbin( uint8_t val ){
int i;
uint8_t v;
for( i = 7; i >=0; --i ){
v = 0;
if( val & _BV(i)) v = 1;
LCD.printNumI( v, 78-6*i, 0*8);
}
}