OpenRTX/platform/drivers/NVM/nvmem_MDx.c

218 wiersze
7.0 KiB
C

/***************************************************************************
* Copyright (C) 2020 - 2025 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Frederik Saraci IU2NRO *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see <http://www.gnu.org/licenses/> *
***************************************************************************/
#include <interfaces/nvmem.h>
#include <interfaces/delays.h>
#include <calibInfo_MDx.h>
#include <nvmem_access.h>
#include <spi_stm32.h>
#include <string.h>
#include <wchar.h>
#include <utils.h>
#include "W25Qx.h"
#define SECREG_READ(dev, offs, data, len) \
nvm_devRead((const struct nvmDevice *) dev, offs, data, len)
static const struct W25QxCfg eflashCfg =
{
#ifdef PLATFORM_MD9600
.spi = &spi2,
#else
.spi = &nvm_spi,
#endif
.cs = { FLASH_CS }
};
W25Qx_DEVICE_DEFINE(eflash, eflashCfg, 0x1000000) // 16 MB, 128 Mbit
W25Qx_SECREG_DEFINE(cal1, eflashCfg, 0x1000, 0x100) // 256 byte
W25Qx_SECREG_DEFINE(cal2, eflashCfg, 0x2000, 0x100) // 256 byte
W25Qx_SECREG_DEFINE(hwInfo, eflashCfg, 0x3000, 0x100) // 256 byte
static const struct nvmDescriptor nvmDevices[] =
{
{
.name = "External flash",
.dev = &eflash,
.partNum = 0,
.partitions = NULL
},
{
.name = "Cal. data 1",
.dev = (const struct nvmDevice *) &cal1,
.partNum = 0,
.partitions = NULL
},
{
.name = "Cal. data 2",
.dev = (const struct nvmDevice *) &cal2,
.partNum = 0,
.partitions = NULL
}
};
void nvm_init()
{
#ifndef PLATFORM_MD9600
gpio_setMode(FLASH_CLK, ALTERNATE | ALTERNATE_FUNC(5));
gpio_setMode(FLASH_SDO, ALTERNATE | ALTERNATE_FUNC(5));
gpio_setMode(FLASH_SDI, ALTERNATE | ALTERNATE_FUNC(5));
spiStm32_init(&nvm_spi, 21000000, 0);
#endif
W25Qx_init(&eflash);
}
void nvm_terminate()
{
W25Qx_terminate(&eflash);
}
const struct nvmDescriptor *nvm_getDesc(const size_t index)
{
if(index >= ARRAY_SIZE(nvmDevices))
return NULL;
return &nvmDevices[index];
}
void nvm_readCalibData(void *buf)
{
uint32_t freqs[18];
// Common calibration data between single and dual-band radios
struct CalData *calib = ((struct CalData *) buf);
// Security register 1: base address 0x1000
SECREG_READ(&cal1, 0x0009, &(calib->freqAdjustMid), 1);
SECREG_READ(&cal1, 0x0010, calib->txHighPower, 9);
SECREG_READ(&cal1, 0x0020, calib->txLowPower, 9);
SECREG_READ(&cal1, 0x0030, calib->rxSensitivity, 9);
// Security register 2: base address 0x2000
SECREG_READ(&cal2, 0x0030, calib->sendIrange, 9);
SECREG_READ(&cal2, 0x0040, calib->sendQrange, 9);
SECREG_READ(&cal2, 0x0070, calib->analogSendIrange, 9);
SECREG_READ(&cal2, 0x0080, calib->analogSendQrange, 9);
SECREG_READ(&cal2, 0x00b0, ((uint8_t *) &freqs), 72);
/*
* Frequency stored in calibration data is divided by ten: so, after
* bcdToBin conversion, we have something like 40'135'000. To ajdust
* things, frequency has to be multiplied by ten.
*/
for(uint8_t i = 0; i < 9; i++)
{
calib->rxFreq[i] = ((freq_t) bcdToBin(freqs[2*i])) * 10;
calib->txFreq[i] = ((freq_t) bcdToBin(freqs[2*i+1])) * 10;
}
// Calibration data for dual-band radios only
#ifndef PLATFORM_MD3x0
mduv3x0Calib_t *cal = (mduv3x0Calib_t *) buf;
struct CalData *vhfCal = &(cal->vhfCal);
// Security register 1: base address 0x1000
SECREG_READ(&cal1, 0x000c, (&vhfCal->freqAdjustMid), 1);
SECREG_READ(&cal1, 0x0019, vhfCal->txHighPower, 5);
SECREG_READ(&cal1, 0x0029, vhfCal->txLowPower, 5);
SECREG_READ(&cal1, 0x0039, vhfCal->rxSensitivity, 5);
// Security register 2: base address 0x2000
SECREG_READ(&cal2, 0x0039, vhfCal->sendIrange, 5);
SECREG_READ(&cal2, 0x0049, vhfCal->sendQrange, 5);
SECREG_READ(&cal2, 0x0079, vhfCal->analogSendIrange, 5);
SECREG_READ(&cal2, 0x0089, vhfCal->analogSendQrange, 5);
SECREG_READ(&cal2, 0x0000, ((uint8_t *) &freqs), 40);
for(uint8_t i = 0; i < 5; i++)
{
vhfCal->rxFreq[i] = ((freq_t) bcdToBin(freqs[2*i]));
vhfCal->txFreq[i] = ((freq_t) bcdToBin(freqs[2*i+1]));
}
#endif
}
void nvm_readHwInfo(hwInfo_t *info)
{
uint16_t freqMin = 0;
uint16_t freqMax = 0;
uint8_t lcdInfo = 0;
// Security register 3: base address 0x3000
SECREG_READ(&hwInfo, 0x0000, info->name, 8);
SECREG_READ(&hwInfo, 0x0014, &freqMin, 2);
SECREG_READ(&hwInfo, 0x0016, &freqMax, 2);
SECREG_READ(&hwInfo, 0x001D, &lcdInfo, 1);
// Ensure correct null-termination of device name by removing the 0xff.
for(uint8_t i = 0; i < sizeof(info->name); i++)
{
if(info->name[i] == 0xFF)
info->name[i] = '\0';
}
freqMin = ((uint16_t) bcdToBin(freqMin))/10;
freqMax = ((uint16_t) bcdToBin(freqMax))/10;
info->hw_version = lcdInfo & 0x03;
#ifdef PLATFORM_MD3x0
// Single band device, either VHF or UHF
if(freqMin < 200)
{
info->vhf_maxFreq = freqMax;
info->vhf_minFreq = freqMin;
info->vhf_band = 1;
}
else
{
info->uhf_maxFreq = freqMax;
info->uhf_minFreq = freqMin;
info->uhf_band = 1;
}
#else
// For dual band devices load the remaining data
uint16_t vhf_freqMin = 0;
uint16_t vhf_freqMax = 0;
SECREG_READ(&hwInfo, 0x0018, &vhf_freqMin, 2);
SECREG_READ(&hwInfo, 0x001a, &vhf_freqMax, 2);
info->vhf_minFreq = ((uint16_t) bcdToBin(vhf_freqMin))/10;
info->vhf_maxFreq = ((uint16_t) bcdToBin(vhf_freqMax))/10;
info->uhf_minFreq = freqMin;
info->uhf_maxFreq = freqMax;
info->vhf_band = 1;
info->uhf_band = 1;
#endif
}
/**
* TODO: functions temporarily implemented in "nvmem_settings_MDx.c"
int nvm_readVFOChannelData(channel_t *channel)
int nvm_readSettings(settings_t *settings)
int nvm_writeSettings(const settings_t *settings)
*/