/*************************************************************************** * Copyright (C) 2020 by Federico Amedeo Izzo IU2NUO, * * Niccolò Izzo IU2KIN * * Frederik Saraci IU2NRO * * Silvano Seva IU2KWO * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, see * ***************************************************************************/ #include #include #include #include #include #include "AT24Cx.h" #include "W25Qx.h" #include "nvmData_GDx.h" #if defined(PLATFORM_GD77) static const uint32_t UHF_CAL_BASE = 0x8F000; static const uint32_t VHF_CAL_BASE = 0x8F070; #elif defined(PLATFORM_DM1801) static const uint32_t UHF_CAL_BASE = 0x6F000; static const uint32_t VHF_CAL_BASE = 0x6F070; #else #warning GDx calibration: platform not supported #endif //const uint32_t zoneBaseAddr = 0x149e0; /**< Base address of zones */ const uint32_t channelBaseAddrEEPROM = 0x03780; /**< Base address of channel data */ const uint32_t channelBaseAddrFlash = 0x7b1c0; /**< Base address of channel data */ const uint32_t vfoChannelBaseAddr = 0x7590; /**< Base address of VFO channel */ const uint32_t zoneBaseAddr = 0x8010; /**< Base address of zones */ const uint32_t contactBaseAddr = 0x87620; /**< Base address of contacts */ const uint32_t maxNumChannels = 1024; /**< Maximum number of channels in memory */ const uint32_t maxNumZones = 68; /**< Maximum number of zones in memory */ const uint32_t maxNumContacts = 1024; /**< Maximum number of contacts in memory */ /** * \internal Utility function to convert 4 byte BCD values into a 32-bit * unsigned integer ones. */ uint32_t _bcd2bin(uint32_t bcd) { return ((bcd >> 28) & 0x0F) * 10000000 + ((bcd >> 24) & 0x0F) * 1000000 + ((bcd >> 20) & 0x0F) * 100000 + ((bcd >> 16) & 0x0F) * 10000 + ((bcd >> 12) & 0x0F) * 1000 + ((bcd >> 8) & 0x0F) * 100 + ((bcd >> 4) & 0x0F) * 10 + (bcd & 0x0F); } /** * \internal Utility function for loading band-specific calibration data into * the corresponding data structure. */ void _loadBandCalData(uint32_t baseAddr, bandCalData_t *cal) { W25Qx_readData(baseAddr + 0x08, &(cal->modBias), 2); W25Qx_readData(baseAddr + 0x0A, &(cal->mod2Offset), 1); W25Qx_readData(baseAddr + 0x3F, cal->analogSqlThresh, 8); W25Qx_readData(baseAddr + 0x47, &(cal->noise1_HighTsh_Wb), 1); W25Qx_readData(baseAddr + 0x48, &(cal->noise1_LowTsh_Wb), 1); W25Qx_readData(baseAddr + 0x49, &(cal->noise2_HighTsh_Wb), 1); W25Qx_readData(baseAddr + 0x4A, &(cal->noise2_LowTsh_Wb), 1); W25Qx_readData(baseAddr + 0x4B, &(cal->rssi_HighTsh_Wb), 1); W25Qx_readData(baseAddr + 0x4C, &(cal->rssi_LowTsh_Wb), 1); W25Qx_readData(baseAddr + 0x4D, &(cal->noise1_HighTsh_Nb), 1); W25Qx_readData(baseAddr + 0x4E, &(cal->noise1_LowTsh_Nb), 1); W25Qx_readData(baseAddr + 0x4F, &(cal->noise2_HighTsh_Nb), 1); W25Qx_readData(baseAddr + 0x50, &(cal->noise2_LowTsh_Nb), 1); W25Qx_readData(baseAddr + 0x51, &(cal->rssi_HighTsh_Nb), 1); W25Qx_readData(baseAddr + 0x52, &(cal->rssi_LowTsh_Nb), 1); W25Qx_readData(baseAddr + 0x53, &(cal->RSSILowerThreshold), 1); W25Qx_readData(baseAddr + 0x54, &(cal->RSSIUpperThreshold), 1); W25Qx_readData(baseAddr + 0x55, cal->mod1Amplitude, 8); W25Qx_readData(baseAddr + 0x5D, &(cal->digAudioGain), 1); W25Qx_readData(baseAddr + 0x5E, &(cal->txDev_DTMF), 1); W25Qx_readData(baseAddr + 0x5F, &(cal->txDev_tone), 1); W25Qx_readData(baseAddr + 0x60, &(cal->txDev_CTCSS_wb), 1); W25Qx_readData(baseAddr + 0x61, &(cal->txDev_CTCSS_nb), 1); W25Qx_readData(baseAddr + 0x62, &(cal->txDev_DCS_wb), 1); W25Qx_readData(baseAddr + 0x63, &(cal->txDev_DCS_nb), 1); W25Qx_readData(baseAddr + 0x64, &(cal->PA_drv), 1); W25Qx_readData(baseAddr + 0x65, &(cal->PGA_gain), 1); W25Qx_readData(baseAddr + 0x66, &(cal->analogMicGain), 1); W25Qx_readData(baseAddr + 0x67, &(cal->rxAGCgain), 1); W25Qx_readData(baseAddr + 0x68, &(cal->mixGainWideband), 2); W25Qx_readData(baseAddr + 0x6A, &(cal->mixGainNarrowband), 2); W25Qx_readData(baseAddr + 0x6C, &(cal->rxDacGain), 1); W25Qx_readData(baseAddr + 0x6D, &(cal->rxVoiceGain), 1); uint8_t txPwr[32] = {0}; W25Qx_readData(baseAddr + 0x0B, txPwr, 32); for(uint8_t i = 0; i < 16; i++) { cal->txLowPower[i] = txPwr[2*i]; cal->txHighPower[i] = txPwr[2*i+1]; } } // Strings in GD-77 codeplug are terminated with 0xFF, // replace 0xFF terminator with 0x00 to be compatible with C strings void _addStringTerminator(char *buf, uint8_t max_len) { for(int i=0; idata[0])); /* Load VHF band calibration data */ _loadBandCalData(UHF_CAL_BASE, &(calib->data[1])); /* Load UHF band calibration data */ W25Qx_sleep(); /* * Finally, load calibration points. These are common among all the GDx * devices. * VHF calibration head and tail are not equally spaced as the other points, * so we manually override the values. */ for(uint8_t i = 0; i < 16; i++) { uint8_t ii = i/2; calib->uhfCalPoints[ii] = 405000000 + (5000000 * ii); calib->uhfPwrCalPoints[i] = 400000000 + (5000000 * i); } for(uint8_t i = 0; i < 8; i++) { calib->vhfCalPoints[i] = 135000000 + (5000000 * i); } calib->vhfCalPoints[0] = 136000000; calib->vhfCalPoints[7] = 172000000; } void nvm_loadHwInfo(hwInfo_t *info) { /* GDx devices does not have any hardware info in the external flash. */ (void) info; } int nvm_readVFOChannelData(channel_t *channel) { gdxChannel_t chData; AT24Cx_readData(vfoChannelBaseAddr, ((uint8_t *) &chData), sizeof(gdxChannel_t)); // Copy data to OpenRTX channel_t channel->mode = chData.channel_mode + 1; channel->bandwidth = chData.bandwidth; channel->admit_criteria = chData.admit_criteria; channel->squelch = chData.squelch; channel->rx_only = chData.rx_only; channel->vox = chData.vox; channel->power = ((chData.power == 1) ? 5.0f : 1.0f); channel->rx_frequency = _bcd2bin(chData.rx_frequency) * 10; channel->tx_frequency = _bcd2bin(chData.tx_frequency) * 10; channel->tot = chData.tot; channel->tot_rekey_delay = chData.tot_rekey_delay; channel->emSys_index = chData.emergency_system_index; channel->scanList_index = chData.scan_list_index; channel->groupList_index = chData.group_list_index; memcpy(channel->name, chData.name, sizeof(chData.name)); // Terminate string with 0x00 instead of 0xFF _addStringTerminator(channel->name, sizeof(chData.name)); /* Load mode-specific parameters */ if(channel->mode == OPMODE_FM) { channel->fm.txToneEn = 0; channel->fm.rxToneEn = 0; uint16_t rx_css = chData.ctcss_dcs_receive; uint16_t tx_css = chData.ctcss_dcs_transmit; // TODO: Implement binary search to speed up this lookup if((rx_css != 0) && (rx_css != 0xFFFF)) { for(int i = 0; i < MAX_TONE_INDEX; i++) { if(ctcss_tone[i] == ((uint16_t) _bcd2bin(rx_css))) { channel->fm.rxTone = i; channel->fm.rxToneEn = 1; break; } } } if((tx_css != 0) && (tx_css != 0xFFFF)) { for(int i = 0; i < MAX_TONE_INDEX; i++) { if(ctcss_tone[i] == ((uint16_t) _bcd2bin(tx_css))) { channel->fm.txTone = i; channel->fm.txToneEn = 1; break; } } } // TODO: Implement warning screen if tone was not found } else if(channel->mode == OPMODE_DMR) { channel->dmr.contactName_index = chData.contact_name_index; channel->dmr.dmr_timeslot = chData.repeater_slot; channel->dmr.rxColorCode = chData.colorcode_rx; channel->dmr.txColorCode = chData.colorcode_tx; } return 0; } int nvm_readChannelData(channel_t *channel, uint16_t pos) { if((pos <= 0) || (pos > maxNumChannels)) return -1; // Channels are organized in 128-channel banks uint8_t bank_num = (pos - 1) / 128; // Note: pos is 1-based because an empty slot in a zone contains index 0 uint8_t bank_channel = (pos - 1) % 128; // ### Read channel bank bitmap ### uint8_t bitmap[16]; // First channel bank (128 channels) is saved in EEPROM if(pos <= 128) { uint32_t readAddr = channelBaseAddrEEPROM + bank_num * sizeof(gdxChannelBank_t); AT24Cx_readData(readAddr, ((uint8_t *) &bitmap), sizeof(bitmap)); } // Remaining 7 channel banks (896 channels) are saved in SPI Flash else { W25Qx_wakeup(); delayUs(5); uint32_t readAddr = channelBaseAddrFlash + (bank_num - 1) * sizeof(gdxChannelBank_t); W25Qx_readData(readAddr, ((uint8_t *) &bitmap), sizeof(bitmap)); W25Qx_sleep(); } uint8_t bitmap_byte = bank_channel / 8; uint8_t bitmap_bit = bank_channel % 8; gdxChannel_t chData; // The channel is marked not valid in the bitmap if(!(bitmap[bitmap_byte] & (1 << bitmap_bit))) return -1; // The channel is marked valid in the bitmap // ### Read desired channel from the correct bank ### else { uint32_t channelOffset = sizeof(bitmap) + (pos - 1) * sizeof(gdxChannel_t); // First channel bank (128 channels) is saved in EEPROM if(pos <= 128) { uint32_t bankAddr = channelBaseAddrEEPROM + bank_num * sizeof(gdxChannelBank_t); AT24Cx_readData(bankAddr + channelOffset, ((uint8_t *) &chData), sizeof(gdxChannel_t)); } // Remaining 7 channel banks (896 channels) are saved in SPI Flash else { W25Qx_wakeup(); delayUs(5); uint32_t bankAddr = channelBaseAddrFlash + bank_num * sizeof(gdxChannelBank_t); W25Qx_readData(bankAddr + channelOffset, ((uint8_t *) &chData), sizeof(gdxChannel_t)); W25Qx_sleep(); } } // Copy data to OpenRTX channel_t channel->mode = chData.channel_mode + 1; channel->bandwidth = chData.bandwidth; channel->admit_criteria = chData.admit_criteria; channel->squelch = chData.squelch; channel->rx_only = chData.rx_only; channel->vox = chData.vox; channel->power = ((chData.power == 1) ? 5.0f : 1.0f); channel->rx_frequency = _bcd2bin(chData.rx_frequency) * 10; channel->tx_frequency = _bcd2bin(chData.tx_frequency) * 10; channel->tot = chData.tot; channel->tot_rekey_delay = chData.tot_rekey_delay; channel->emSys_index = chData.emergency_system_index; channel->scanList_index = chData.scan_list_index; channel->groupList_index = chData.group_list_index; memcpy(channel->name, chData.name, sizeof(chData.name)); // Terminate string with 0x00 instead of 0xFF _addStringTerminator(channel->name, sizeof(chData.name)); /* Load mode-specific parameters */ if(channel->mode == OPMODE_FM) { channel->fm.txToneEn = 0; channel->fm.rxToneEn = 0; uint16_t rx_css = chData.ctcss_dcs_receive; uint16_t tx_css = chData.ctcss_dcs_transmit; // TODO: Implement binary search to speed up this lookup if((rx_css != 0) && (rx_css != 0xFFFF)) { for(int i = 0; i < MAX_TONE_INDEX; i++) { if(ctcss_tone[i] == ((uint16_t) _bcd2bin(rx_css))) { channel->fm.rxTone = i; channel->fm.rxToneEn = 1; break; } } } if((tx_css != 0) && (tx_css != 0xFFFF)) { for(int i = 0; i < MAX_TONE_INDEX; i++) { if(ctcss_tone[i] == ((uint16_t) _bcd2bin(tx_css))) { channel->fm.txTone = i; channel->fm.txToneEn = 1; break; } } } // TODO: Implement warning screen if tone was not found } else if(channel->mode == OPMODE_DMR) { channel->dmr.contactName_index = chData.contact_name_index; channel->dmr.dmr_timeslot = chData.repeater_slot; channel->dmr.rxColorCode = chData.colorcode_rx; channel->dmr.txColorCode = chData.colorcode_tx; } return 0; } int nvm_readZoneData(zone_t *zone, uint16_t pos) { if((pos <= 0) || (pos > maxNumZones)) return -1; // zone number is 1-based to be consistent with channels // Convert to 0-based index to fetch data from flash uint16_t index = pos - 1; // ### Read zone bank bitmap ### uint8_t bitmap[32]; AT24Cx_readData(zoneBaseAddr, ((uint8_t *) &bitmap), sizeof(bitmap)); uint8_t bitmap_byte = index / 8; uint8_t bitmap_bit = index % 8; // The zone is marked not valid in the bitmap if(!(bitmap[bitmap_byte] & (1 << bitmap_bit))) return -1; gdxZone_t zoneData; uint32_t zoneAddr = zoneBaseAddr + sizeof(bitmap) + index * sizeof(gdxZone_t); AT24Cx_readData(zoneAddr, ((uint8_t *) &zoneData), sizeof(gdxZone_t)); // Check if zone is empty if(wcslen((wchar_t *) zoneData.name) == 0) return -1; memcpy(zone->name, zoneData.name, sizeof(zoneData.name)); // Terminate string with 0x00 instead of 0xFF _addStringTerminator(zone->name, sizeof(zoneData.name)); // Copy zone channel indexes for(uint16_t i = 0; i < 16; i++) { zone->member[i] = zoneData.member[i]; } return 0; } int nvm_readContactData(contact_t *contact, uint16_t pos) { if((pos <= 0) || (pos > maxNumContacts)) return -1; W25Qx_wakeup(); delayUs(5); gdxContact_t contactData; // Note: pos is 1-based to be consistent with channels uint32_t contactAddr = contactBaseAddr + (pos - 1) * sizeof(gdxContact_t); W25Qx_readData(contactAddr, ((uint8_t *) &contactData), sizeof(gdxContact_t)); W25Qx_sleep(); // Check if contact is empty if(wcslen((wchar_t *) contactData.name) == 0) return -1; // Copy contact name memcpy(contact->name, contactData.name, sizeof(contactData.name)); // Terminate string with 0x00 instead of 0xFF _addStringTerminator(contact->name, sizeof(contactData.name)); // Copy contact DMR ID contact->id = (contactData.id[0] | contactData.id[1] << 8 | contactData.id[2] << 16); // Copy contact details contact->type = contactData.type; contact->receive_tone = contactData.receive_tone ? true : false; return 0; } int nvm_readSettings(settings_t *settings) { (void) settings; return -1; } int nvm_writeSettings(const settings_t *settings) { (void) settings; return -1; } int nvm_writeSettingsAndVfo(const settings_t *settings, const channel_t *vfo) { (void) settings; (void) vfo; return -1; }