/*************************************************************************** * Copyright (C) 2021 by Federico Amedeo Izzo IU2NUO, * * Niccolò Izzo IU2KIN * * Frederik Saraci IU2NRO * * Silvano Seva IU2KWO * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 3 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, see * ***************************************************************************/ #include #include #include #include #include #include #include #include "radioUtils.h" #include "HR_C6000.h" #include "AT1846S.h" const gdxCalibration_t *calData; // Pointer to calibration data const rtxStatus_t *config; // Pointer to data structure with radio configuration Band currRxBand = BND_NONE; // Current band for RX Band currTxBand = BND_NONE; // Current band for TX uint16_t apcVoltage = 0; // APC voltage for TX output power control enum opstatus radioStatus; // Current operating status HR_C6000& C6000 = HR_C6000::instance(); // HR_C5000 driver AT1846S& at1846s = AT1846S::instance(); // AT1846S driver void radio_init(const rtxStatus_t *rtxState) { /* * Load calibration data */ calData = reinterpret_cast< const gdxCalibration_t * >(platform_getCalibrationData()); config = rtxState; radioStatus = OFF; /* * Configure RTX GPIOs */ gpio_setMode(VHF_LNA_EN, OUTPUT); gpio_setMode(UHF_LNA_EN, OUTPUT); gpio_setMode(VHF_PA_EN, OUTPUT); gpio_setMode(UHF_PA_EN, OUTPUT); gpio_setMode(RX_AUDIO_MUX, OUTPUT); gpio_setMode(TX_AUDIO_MUX, OUTPUT); gpio_clearPin(VHF_LNA_EN); // Turn VHF LNA off gpio_clearPin(UHF_LNA_EN); // Turn UHF LNA off gpio_clearPin(VHF_PA_EN); // Turn VHF PA off gpio_clearPin(UHF_PA_EN); // Turn UHF PA off gpio_clearPin(RX_AUDIO_MUX); // Audio out to HR_C6000 gpio_clearPin(TX_AUDIO_MUX); // Audio in to microphone /* * Enable and configure DAC for PA drive control */ SIM->SCGC6 |= SIM_SCGC6_DAC0_MASK; DAC0->DAT[0].DATL = 0; DAC0->DAT[0].DATH = 0; DAC0->C0 |= DAC_C0_DACRFS_MASK // Reference voltage is Vref2 | DAC_C0_DACEN_MASK; // Enable DAC /* * Enable and configure both AT1846S and HR_C6000 */ at1846s.init(); C6000.init(); } void radio_terminate() { radioStatus = OFF; radio_disableRtx(); C6000.terminate(); DAC0->DAT[0].DATL = 0; DAC0->DAT[0].DATH = 0; SIM->SCGC6 &= ~SIM_SCGC6_DAC0_MASK; } void radio_setOpmode(const enum opmode mode) { switch(mode) { case FM: gpio_setPin(RX_AUDIO_MUX); // Audio out to amplifier gpio_clearPin(TX_AUDIO_MUX); // Audio in to microphone at1846s.setOpMode(AT1846S_OpMode::FM); break; case DMR: gpio_clearPin(RX_AUDIO_MUX); // Audio out to HR_C6000 gpio_setPin(TX_AUDIO_MUX); // Audio in from HR_C6000 at1846s.setOpMode(AT1846S_OpMode::DMR); break; default: break; } } bool radio_checkRxDigitalSquelch() { return true; } void radio_enableRx() { gpio_clearPin(VHF_LNA_EN); gpio_clearPin(UHF_LNA_EN); gpio_clearPin(VHF_PA_EN); gpio_clearPin(UHF_PA_EN); DAC0->DAT[0].DATH = 0; DAC0->DAT[0].DATL = 0; if(currRxBand == BND_NONE) return; // Adjust reference oscillator bias and offset. C6000.writeCfgRegister(0x04, calData->data[currRxBand].mod2Offset); C6000.setModOffset(calData->data[currRxBand].modBias); // Set frequency and enable AT1846S RX at1846s.setFrequency(config->rxFrequency); at1846s.setFuncMode(AT1846S_FuncMode::RX); // Enable RX LNA if(currRxBand == BND_VHF) { gpio_setPin(VHF_LNA_EN); } else { gpio_setPin(UHF_LNA_EN); } radioStatus = RX; } void radio_enableTx() { if(config->txDisable == 1) return; gpio_clearPin(VHF_LNA_EN); gpio_clearPin(UHF_LNA_EN); gpio_clearPin(VHF_PA_EN); gpio_clearPin(UHF_PA_EN); if(currTxBand == BND_NONE) return; // Adjust reference oscillator bias and offset. C6000.writeCfgRegister(0x04, calData->data[currTxBand].mod2Offset); C6000.setModOffset(calData->data[currTxBand].modBias); // Set frequency and enable AT1846S TX at1846s.setFrequency(config->txFrequency); at1846s.setFuncMode(AT1846S_FuncMode::TX); // Set APC voltage DAC0->DAT[0].DATH = (apcVoltage >> 8) & 0xFF; DAC0->DAT[0].DATL = apcVoltage & 0xFF; // Enable TX PA if(currTxBand == BND_VHF) { gpio_setPin(VHF_PA_EN); } else { gpio_setPin(UHF_PA_EN); } if(config->txToneEn) { at1846s.enableTxCtcss(config->txTone); } radioStatus = TX; } void radio_disableRtx() { gpio_clearPin(VHF_LNA_EN); gpio_clearPin(UHF_LNA_EN); gpio_clearPin(VHF_PA_EN); gpio_clearPin(UHF_PA_EN); if(radioStatus == TX) { at1846s.disableCtcss(); DAC0->DAT[0].DATH = 0; DAC0->DAT[0].DATL = 0; } at1846s.setFuncMode(AT1846S_FuncMode::OFF); radioStatus = OFF; } void radio_updateConfiguration() { currRxBand = getBandFromFrequency(config->rxFrequency); currTxBand = getBandFromFrequency(config->txFrequency); if((currRxBand == BND_NONE) || (currTxBand == BND_NONE)) return; /* * Parameters dependent on RX frequency only */ const bandCalData_t *cal = &(calData->data[currRxBand]); at1846s.setRxAudioGain(cal->rxDacGain, cal->rxVoiceGain); if(config->bandwidth == BW_12_5) { at1846s.setNoise1Thresholds(cal->noise1_HighTsh_Nb, cal->noise1_LowTsh_Nb); at1846s.setNoise2Thresholds(cal->noise2_HighTsh_Nb, cal->noise2_LowTsh_Nb); at1846s.setRssiThresholds(cal->rssi_HighTsh_Nb, cal->rssi_LowTsh_Nb); } else { at1846s.setNoise1Thresholds(cal->noise1_HighTsh_Wb, cal->noise1_LowTsh_Wb); at1846s.setNoise2Thresholds(cal->noise2_HighTsh_Wb, cal->noise2_LowTsh_Wb); at1846s.setRssiThresholds(cal->rssi_HighTsh_Wb, cal->rssi_LowTsh_Wb); } C6000.writeCfgRegister(0x37, cal->digAudioGain); // DACDATA gain uint8_t sqlTresh = 0; if(currRxBand == BND_VHF) { sqlTresh = interpCalParameter(config->rxFrequency, calData->vhfCalPoints, cal->analogSqlThresh, 8); } else { sqlTresh = interpCalParameter(config->rxFrequency, calData->uhfCalPoints, cal->analogSqlThresh, 8); } at1846s.setAnalogSqlThresh(sqlTresh); /* * Parameters dependent on TX frequency only */ at1846s.setPgaGain(calData->data[currTxBand].PGA_gain); at1846s.setMicGain(calData->data[currTxBand].analogMicGain); at1846s.setAgcGain(calData->data[currTxBand].rxAGCgain); at1846s.setPaDrive(calData->data[currTxBand].PA_drv); uint8_t mod1Amp = 0; uint8_t txpwr_lo = 0; uint8_t txpwr_hi = 0; if(currTxBand == BND_VHF) { /* VHF band */ txpwr_lo = interpCalParameter(config->txFrequency, calData->vhfCalPoints, calData->data[currTxBand].txLowPower, 8); txpwr_hi = interpCalParameter(config->txFrequency, calData->vhfCalPoints, calData->data[currTxBand].txHighPower, 8); mod1Amp = interpCalParameter(config->txFrequency, calData->vhfCalPoints, cal->mod1Amplitude, 8); } else { /* UHF band */ txpwr_lo = interpCalParameter(config->txFrequency, calData->uhfPwrCalPoints, calData->data[currTxBand].txLowPower, 16); txpwr_hi = interpCalParameter(config->txFrequency, calData->uhfPwrCalPoints, calData->data[currTxBand].txHighPower, 16); mod1Amp = interpCalParameter(config->txFrequency, calData->uhfCalPoints, cal->mod1Amplitude, 8); } C6000.setModAmplitude(0, mod1Amp); // Calculate APC voltage, constraining output power between 1W and 5W. float power = std::max(std::min(config->txPower, 5.0f), 1.0f); float pwrHi = static_cast< float >(txpwr_hi); float pwrLo = static_cast< float >(txpwr_lo); float apc = pwrLo + (pwrHi - pwrLo)/4.0f*(power - 1.0f); apcVoltage = static_cast< uint16_t >(apc) * 16; // Set bandwidth and TX deviation, force 12.5kHz for DMR mode if((config->bandwidth == BW_12_5) || (config->opMode == DMR)) { at1846s.setBandwidth(AT1846S_BW::_12P5); at1846s.setTxDeviation(calData->data[currTxBand].mixGainNarrowband); } else { at1846s.setBandwidth(AT1846S_BW::_25); at1846s.setTxDeviation(calData->data[currTxBand].mixGainWideband); } /* * Update VCO frequency and tuning parameters if current operating status * is different from OFF. * This is done by calling again the corresponding functions, which is safe * to do and avoids code duplication. */ if(radioStatus == RX) radio_enableRx(); if(radioStatus == TX) radio_enableTx(); } float radio_getRssi() { return static_cast< float >(at1846s.readRSSI()); } enum opstatus radio_getStatus() { return radioStatus; }