/***************************************************************************
* Copyright (C) 2021 - 2023 by Federico Amedeo Izzo IU2NUO, *
* Niccolò Izzo IU2KIN *
* Frederik Saraci IU2NRO *
* Silvano Seva IU2KWO *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 3 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, see *
***************************************************************************/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "HR_C5000.h"
#include "SKY72310.h"
static const freq_t IF_FREQ = 49950000; // Intermediate frequency: 49.95MHz
static const rtxStatus_t *config; // Pointer to data structure with radio configuration
static md3x0Calib_t calData; // Calibration data
static bool isVhfBand = false; // True if rtx stage is for VHF band
static uint8_t vtune_rx = 0; // Tuning voltage for RX input filter
static uint8_t txpwr_lo = 0; // APC voltage for TX output power control, low power
static uint8_t txpwr_hi = 0; // APC voltage for TX output power control, high power
static enum opstatus radioStatus; // Current operating status
static HR_C5000& C5000 = HR_C5000::instance(); // HR_C5000 driver
/*
* Parameters for RSSI voltage (mV) to input power (dBm) conversion.
* Gain is constant, while offset values are aligned to calibration frequency
* test points.
* Thanks to Wojciech SP5WWP for the measurements!
*/
const float rssi_gain = 22.0f;
const float rssi_offset[] = {3277.618f, 3654.755f, 3808.191f,
3811.318f, 3804.936f, 3806.591f,
3723.882f, 3621.373f, 3559.782f};
void _setBandwidth(const enum bandwidth bw)
{
switch(bw)
{
case BW_12_5:
#ifndef MDx_ENABLE_SWD
gpio_clearPin(WN_SW);
#endif
C5000.setModFactor(0x1E);
break;
case BW_25:
#ifndef MDx_ENABLE_SWD
gpio_setPin(WN_SW);
#endif
C5000.setModFactor(0x3C);
break;
default:
break;
}
}
void radio_init(const rtxStatus_t *rtxState)
{
config = rtxState;
radioStatus = OFF;
isVhfBand = (platform_getHwInfo()->vhf_band == 1) ? true : false;
/*
* Configure RTX GPIOs
*/
gpio_setMode(PLL_PWR, OUTPUT);
gpio_setMode(VCOVCC_SW, OUTPUT);
gpio_setMode(DMR_SW, OUTPUT);
#ifndef MDx_ENABLE_SWD
gpio_setMode(WN_SW, OUTPUT);
#endif
gpio_setMode(FM_SW, OUTPUT);
gpio_setMode(RF_APC_SW, OUTPUT);
gpio_setMode(TX_STG_EN, OUTPUT);
gpio_setMode(RX_STG_EN, OUTPUT);
gpio_setMode(FM_MUTE, OUTPUT);
gpio_clearPin(PLL_PWR); // PLL off
gpio_setPin(VCOVCC_SW); // VCOVCC high enables RX VCO, TX VCO if low
#ifndef MDx_ENABLE_SWD
gpio_setPin(WN_SW); // 25kHz bandwidth
#endif
gpio_clearPin(FM_MUTE); // Mute FM AF output
gpio_clearPin(DMR_SW); // Disconnect HR_C5000 input IF signal and audio out
gpio_clearPin(FM_SW); // Disconnect analog FM audio path
gpio_clearPin(RF_APC_SW); // Disable TX power control
gpio_clearPin(TX_STG_EN); // Disable TX power stage
gpio_clearPin(RX_STG_EN); // Disable RX input stage
/*
* Configure and enable DAC
*/
gpio_setMode(APC_TV, INPUT_ANALOG);
gpio_setMode(MOD2_BIAS, INPUT_ANALOG);
RCC->APB1ENR |= RCC_APB1ENR_DACEN;
DAC->CR = DAC_CR_EN2 | DAC_CR_EN1;
DAC->DHR12R2 = 0;
DAC->DHR12R1 = 0;
/*
* Load calibration data
*/
nvm_readCalibData(&calData);
/*
* Enable and configure PLL
*/
gpio_setPin(PLL_PWR);
SKY73210_init();
/*
* Configure HR_C5000
*/
C5000.init();
/*
* Modulation bias settings, as per TYT firmware.
*/
DAC->DHR12R2 = (calData.freqAdjustMid)*4 + 0x600;
C5000.setModOffset(calData.freqAdjustMid);
}
void radio_terminate()
{
SKY73210_terminate();
C5000.terminate();
gpio_clearPin(PLL_PWR); // PLL off
gpio_clearPin(DMR_SW); // Disconnect HR_C5000 input IF signal and audio out
gpio_clearPin(FM_SW); // Disconnect analog FM audio path
gpio_clearPin(RF_APC_SW); // Disable RF power control
gpio_clearPin(TX_STG_EN); // Disable TX power stage
gpio_clearPin(RX_STG_EN); // Disable RX input stage
DAC->DHR12R2 = 0;
DAC->DHR12R1 = 0;
RCC->APB1ENR &= ~RCC_APB1ENR_DACEN;
}
void radio_tuneVcxo(const int16_t vhfOffset, const int16_t uhfOffset)
{
(void) vhfOffset;
/*
* Adjust VCXO bias voltage acting on the value stored in MCU's DAC.
* Data from calibration is first converted to int16_t, then the value for
* the DAC register is computed according to which is done inside TYT's
* firmware.
* The signed offset is then added to this value, the result is constrained
* in the range [0 4095], converted to uint16_t and written into the DAC
* register.
*
* NOTE: we deliberately chose not to update the HR_C5000 modulation offset
* register, as we still have to deeply understand how TYT computes
* the values written there.
*/
int16_t calValue = static_cast< int16_t >(calData.freqAdjustMid);
int16_t oscTune = (calValue*4 + 0x600) + uhfOffset;
oscTune = std::max(std::min(oscTune, int16_t(4095)), int16_t(0));
DAC->DHR12R2 = static_cast< uint16_t >(oscTune);
}
void radio_setOpmode(const enum opmode mode)
{
switch(mode)
{
case OPMODE_FM:
gpio_clearPin(DMR_SW); // Disconnect analog paths for DMR
gpio_setPin(FM_SW); // Enable analog RX stage after superhet
C5000.fmMode(); // HR_C5000 in FM mode
C5000.setInputGain(+3); // Input gain in dB, as per TYT firmware
break;
case OPMODE_DMR:
gpio_clearPin(FM_SW); // Disable analog RX stage after superhet
gpio_setPin(DMR_SW); // Enable analog paths for DMR
_setBandwidth(BW_12_5); // Set bandwidth to 12.5kHz
//C5000_dmrMode();
break;
case OPMODE_M17:
gpio_clearPin(DMR_SW); // Disconnect analog paths for DMR
gpio_setPin(FM_SW); // Enable analog RX stage after superhet
C5000.fmMode(); // HR_C5000 in FM mode
C5000.setInputGain(-3); // Input gain in dB, found experimentally
_setBandwidth(BW_25); // Set bandwidth to 25kHz for proper deviation
break;
default:
break;
}
}
bool radio_checkRxDigitalSquelch()
{
return false;
}
void radio_enableAfOutput()
{
// TODO: AF output management for DMR mode
gpio_setPin(FM_MUTE);
}
void radio_disableAfOutput()
{
gpio_clearPin(FM_MUTE);
}
void radio_enableRx()
{
gpio_clearPin(TX_STG_EN); // Disable TX PA
gpio_clearPin(RF_APC_SW); // APC/TV used for RX filter tuning
gpio_setPin(VCOVCC_SW); // Enable RX VCO
// Set PLL frequency and filter tuning voltage
float pllFreq = static_cast< float >(config->rxFrequency);
if(isVhfBand)
{
pllFreq += static_cast< float >(IF_FREQ);
pllFreq *= 2.0f;
}
else
{
pllFreq -= static_cast< float >(IF_FREQ);
}
SKY73210_setFrequency(pllFreq, 5);
DAC->DHR12L1 = vtune_rx * 0xFF;
gpio_setPin(RX_STG_EN); // Enable RX LNA
radioStatus = RX;
}
void radio_enableTx()
{
if(config->txDisable == 1) return;
gpio_clearPin(RX_STG_EN); // Disable RX LNA
gpio_setPin(RF_APC_SW); // APC/TV in power control mode
gpio_clearPin(VCOVCC_SW); // Enable TX VCO
// Set PLL frequency.
float pllFreq = static_cast< float >(config->txFrequency);
if(isVhfBand) pllFreq *= 2.0f;
SKY73210_setFrequency(pllFreq, 5);
// Set TX output power, constrain between 1W and 5W.
float power = static_cast < float >(config->txPower) / 1000.0f;
power = std::max(std::min(power, 5.0f), 1.0f);
float pwrHi = static_cast< float >(txpwr_hi);
float pwrLo = static_cast< float >(txpwr_lo);
float apc = pwrLo + (pwrHi - pwrLo)/4.0f*(power - 1.0f);
DAC->DHR12L1 = static_cast< uint8_t >(apc) * 0xFF;
switch(config->opMode)
{
case OPMODE_FM:
{
TxAudioSource source = TxAudioSource::MIC;
FmConfig cfg = (config->bandwidth == BW_12_5) ? FmConfig::BW_12p5kHz
: FmConfig::BW_25kHz;
// Setup 1750Hz tone, if enabled
if(config->toneEn)
{
source = TxAudioSource::LINE_IN; // HR_C5000 audio input is tone generator
C5000.setModFactor(0x1E); // Set correct modulation factor
gpio_setMode(BEEP_OUT, ALTERNATE); // Override audio path configuration
toneGen_beepOn(1750.0f, 255, 0); // Enable 1750Hz tone, always on
}
C5000.startAnalogTx(source, cfg | FmConfig::PREEMPH_EN);
}
break;
case OPMODE_M17:
C5000.startAnalogTx(TxAudioSource::LINE_IN, FmConfig::BW_25kHz);
break;
default:
break;
}
gpio_setPin(TX_STG_EN); // Enable TX PA
if(config->txToneEn == 1)
{
toneGen_toneOn(); // Enable CTSS
}
radioStatus = TX;
}
void radio_disableRtx()
{
if(radioStatus == TX)
{
C5000.stopAnalogTx(); // Stop HR_C5000 tx
toneGen_toneOff(); // Stop CTCSS tone
// Stop 1750Hz tone
if(config->toneEn)
{
toneGen_beepOff();
gpio_setMode(BEEP_OUT, INPUT);
}
}
gpio_clearPin(TX_STG_EN); // Disable TX PA
gpio_clearPin(RX_STG_EN); // Disable RX LNA
gpio_clearPin(FM_MUTE); // Mute analog path towards the audio amplifier
radioStatus = OFF;
}
void radio_updateConfiguration()
{
// Tuning voltage for RX input filter
vtune_rx = interpCalParameter(config->rxFrequency, calData.rxFreq,
calData.rxSensitivity, 9);
// APC voltage for TX output power control
txpwr_lo = interpCalParameter(config->txFrequency, calData.txFreq,
calData.txLowPower, 9);
txpwr_hi = interpCalParameter(config->txFrequency, calData.txFreq,
calData.txHighPower, 9);
// HR_C5000 modulation amplitude
const uint8_t *Ical = calData.sendIrange;
const uint8_t *Qcal = calData.sendQrange;
if(config->opMode == OPMODE_FM)
{
Ical = calData.analogSendIrange;
Qcal = calData.analogSendQrange;
}
uint8_t I = interpCalParameter(config->txFrequency, calData.txFreq, Ical, 9);
uint8_t Q = interpCalParameter(config->txFrequency, calData.txFreq, Qcal, 9);
C5000.setModAmplitude(I, Q);
// Set bandwidth, only for analog FM mode
if(config->opMode == OPMODE_FM)
{
enum bandwidth bw = static_cast< enum bandwidth >(config->bandwidth);
_setBandwidth(bw);
}
// Set CTCSS tone
float tone = static_cast< float >(config->txTone) / 10.0f;
toneGen_setToneFreq(tone);
/*
* Update VCO frequency and tuning parameters if current operating status
* is different from OFF.
* This is done by calling again the corresponding functions, which is safe
* to do and avoids code duplication.
*/
if(radioStatus == RX) radio_enableRx();
if(radioStatus == TX) radio_enableTx();
}
rssi_t radio_getRssi()
{
/*
* On MD3x0 devices, RSSI value is get by reading the analog RSSI output
* from second IF stage (GT3136 IC).
* The corresponding power value is obtained through the linear correlation
* existing between measured voltage in mV and power in dBm. While gain is
* constant, offset depends from the rx frequency.
*/
freq_t rxFreq = config->rxFrequency;
uint32_t offset_index = (rxFreq - 400035000)/10000000;
if(rxFreq < 401035000) offset_index = 0;
if(rxFreq > 479995000) offset_index = 8;
float rssi_mv = ((float) adc1_getMeasurement(ADC_RSSI_CH));
float rssi_dbm = (rssi_mv - rssi_offset[offset_index]) / rssi_gain;
return static_cast< rssi_t >(rssi_dbm);
}
enum opstatus radio_getStatus()
{
return radioStatus;
}