OpenDroneMap-ODM/opendm/dem/merge.py

176 wiersze
6.9 KiB
Python

import math
import numpy as np
from scipy import ndimage
import rasterio
from rasterio.transform import Affine, rowcol
from opendm import system
from opendm.dem.commands import compute_euclidean_map
from opendm import log
from opendm import io
import os
def euclidean_merge_dems(input_dems, output_dem, creation_options={}, euclidean_map_source=None):
"""
Based on https://github.com/mapbox/rio-merge-rgba
and ideas from Anna Petrasova
implementation by Piero Toffanin
Computes a merged DEM by computing/using a euclidean
distance to NODATA cells map for all DEMs and then blending all overlapping DEM cells
by a weighted average based on such euclidean distance.
"""
inputs = []
bounds=None
precision=7
existing_dems = []
for dem in input_dems:
if not io.file_exists(dem):
log.ODM_WARNING("%s does not exist. Will skip from merged DEM." % dem)
continue
existing_dems.append(dem)
if len(existing_dems) == 0:
log.ODM_WARNING("No input DEMs, skipping euclidean merge.")
return
with rasterio.open(existing_dems[0]) as first:
src_nodata = first.nodatavals[0]
res = first.res
dtype = first.dtypes[0]
profile = first.profile
for dem in existing_dems:
eumap = compute_euclidean_map(dem, io.related_file_path(dem, postfix=".euclideand", replace_base=euclidean_map_source), overwrite=False)
if eumap and io.file_exists(eumap):
inputs.append((dem, eumap))
log.ODM_INFO("%s valid DEM rasters to merge" % len(inputs))
sources = [(rasterio.open(d), rasterio.open(e)) for d,e in inputs]
# Extent from option or extent of all inputs.
if bounds:
dst_w, dst_s, dst_e, dst_n = bounds
else:
# scan input files.
# while we're at it, validate assumptions about inputs
xs = []
ys = []
for src_d, src_e in sources:
left, bottom, right, top = src_d.bounds
xs.extend([left, right])
ys.extend([bottom, top])
if src_d.profile["count"] != 1 or src_e.profile["count"] != 1:
raise ValueError("Inputs must be 1-band rasters")
dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys)
log.ODM_INFO("Output bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
output_transform = Affine.translation(dst_w, dst_n)
output_transform *= Affine.scale(res[0], -res[1])
# Compute output array shape. We guarantee it will cover the output
# bounds completely.
output_width = int(math.ceil((dst_e - dst_w) / res[0]))
output_height = int(math.ceil((dst_n - dst_s) / res[1]))
# Adjust bounds to fit.
dst_e, dst_s = output_transform * (output_width, output_height)
log.ODM_INFO("Output width: %d, height: %d" % (output_width, output_height))
log.ODM_INFO("Adjusted bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
profile["transform"] = output_transform
profile["height"] = output_height
profile["width"] = output_width
profile["tiled"] = creation_options.get('TILED', 'YES') == 'YES'
profile["blockxsize"] = creation_options.get('BLOCKXSIZE', 512)
profile["blockysize"] = creation_options.get('BLOCKYSIZE', 512)
profile["compress"] = creation_options.get('COMPRESS', 'LZW')
profile["nodata"] = src_nodata
# Creation opts
profile.update(creation_options)
# create destination file
with rasterio.open(output_dem, "w", **profile) as dstrast:
for idx, dst_window in dstrast.block_windows():
left, bottom, right, top = dstrast.window_bounds(dst_window)
blocksize = dst_window.width
dst_rows, dst_cols = (dst_window.height, dst_window.width)
# initialize array destined for the block
dst_count = first.count
dst_shape = (dst_count, dst_rows, dst_cols)
dstarr = np.zeros(dst_shape, dtype=dtype)
distsum = np.zeros(dst_shape, dtype=dtype)
small_distance = 0.001953125
for src_d, src_e in sources:
# The full_cover behavior is problematic here as it includes
# extra pixels along the bottom right when the sources are
# slightly misaligned
#
# src_window = get_window(left, bottom, right, top,
# src.transform, precision=precision)
#
# With rio merge this just adds an extra row, but when the
# imprecision occurs at each block, you get artifacts
nodata = src_d.nodatavals[0]
# Alternative, custom get_window using rounding
src_window_d = tuple(zip(rowcol(
src_d.transform, left, top, op=round, precision=precision
), rowcol(
src_d.transform, right, bottom, op=round, precision=precision
)))
src_window_e = tuple(zip(rowcol(
src_e.transform, left, top, op=round, precision=precision
), rowcol(
src_e.transform, right, bottom, op=round, precision=precision
)))
temp_d = np.zeros(dst_shape, dtype=dtype)
temp_d = src_d.read(
out=temp_d, window=src_window_d, boundless=True, masked=False
)
temp_e = np.zeros(dst_shape, dtype=dtype)
temp_e = src_e.read(
out=temp_e, window=src_window_e, boundless=True, masked=False
)
# Set NODATA areas in the euclidean map to a very low value
# so that:
# - Areas with overlap prioritize DEM layers' cells that
# are far away from NODATA areas
# - Areas that have no overlap are included in the final result
# even if they are very close to a NODATA cell
temp_e[temp_e==0] = small_distance
temp_e[temp_d==nodata] = 0
np.multiply(temp_d, temp_e, out=temp_d)
np.add(dstarr, temp_d, out=dstarr)
np.add(distsum, temp_e, out=distsum)
np.divide(dstarr, distsum, out=dstarr, where=distsum[0] != 0.0)
# Perform nearest neighbor interpolation on areas where two or more rasters overlap
# but where both rasters have only interpolated data. This prevents the creation
# of artifacts that average areas of interpolation.
indices = ndimage.distance_transform_edt(np.logical_and(distsum < 1, distsum > small_distance),
return_distances=False,
return_indices=True)
dstarr = dstarr[tuple(indices)]
dstarr[dstarr == 0.0] = src_nodata
dstrast.write(dstarr, window=dst_window)
return output_dem