kopia lustrzana https://github.com/OpenDroneMap/ODM
176 wiersze
6.9 KiB
Python
176 wiersze
6.9 KiB
Python
import math
|
|
import numpy as np
|
|
from scipy import ndimage
|
|
import rasterio
|
|
from rasterio.transform import Affine, rowcol
|
|
from opendm import system
|
|
from opendm.dem.commands import compute_euclidean_map
|
|
from opendm import log
|
|
from opendm import io
|
|
import os
|
|
|
|
def euclidean_merge_dems(input_dems, output_dem, creation_options={}, euclidean_map_source=None):
|
|
"""
|
|
Based on https://github.com/mapbox/rio-merge-rgba
|
|
and ideas from Anna Petrasova
|
|
implementation by Piero Toffanin
|
|
|
|
Computes a merged DEM by computing/using a euclidean
|
|
distance to NODATA cells map for all DEMs and then blending all overlapping DEM cells
|
|
by a weighted average based on such euclidean distance.
|
|
"""
|
|
inputs = []
|
|
bounds=None
|
|
precision=7
|
|
|
|
existing_dems = []
|
|
for dem in input_dems:
|
|
if not io.file_exists(dem):
|
|
log.ODM_WARNING("%s does not exist. Will skip from merged DEM." % dem)
|
|
continue
|
|
existing_dems.append(dem)
|
|
|
|
if len(existing_dems) == 0:
|
|
log.ODM_WARNING("No input DEMs, skipping euclidean merge.")
|
|
return
|
|
|
|
with rasterio.open(existing_dems[0]) as first:
|
|
src_nodata = first.nodatavals[0]
|
|
res = first.res
|
|
dtype = first.dtypes[0]
|
|
profile = first.profile
|
|
|
|
for dem in existing_dems:
|
|
eumap = compute_euclidean_map(dem, io.related_file_path(dem, postfix=".euclideand", replace_base=euclidean_map_source), overwrite=False)
|
|
if eumap and io.file_exists(eumap):
|
|
inputs.append((dem, eumap))
|
|
|
|
log.ODM_INFO("%s valid DEM rasters to merge" % len(inputs))
|
|
|
|
sources = [(rasterio.open(d), rasterio.open(e)) for d,e in inputs]
|
|
|
|
# Extent from option or extent of all inputs.
|
|
if bounds:
|
|
dst_w, dst_s, dst_e, dst_n = bounds
|
|
else:
|
|
# scan input files.
|
|
# while we're at it, validate assumptions about inputs
|
|
xs = []
|
|
ys = []
|
|
for src_d, src_e in sources:
|
|
left, bottom, right, top = src_d.bounds
|
|
xs.extend([left, right])
|
|
ys.extend([bottom, top])
|
|
if src_d.profile["count"] != 1 or src_e.profile["count"] != 1:
|
|
raise ValueError("Inputs must be 1-band rasters")
|
|
dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys)
|
|
log.ODM_INFO("Output bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
|
|
|
|
output_transform = Affine.translation(dst_w, dst_n)
|
|
output_transform *= Affine.scale(res[0], -res[1])
|
|
|
|
# Compute output array shape. We guarantee it will cover the output
|
|
# bounds completely.
|
|
output_width = int(math.ceil((dst_e - dst_w) / res[0]))
|
|
output_height = int(math.ceil((dst_n - dst_s) / res[1]))
|
|
|
|
# Adjust bounds to fit.
|
|
dst_e, dst_s = output_transform * (output_width, output_height)
|
|
log.ODM_INFO("Output width: %d, height: %d" % (output_width, output_height))
|
|
log.ODM_INFO("Adjusted bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
|
|
|
|
profile["transform"] = output_transform
|
|
profile["height"] = output_height
|
|
profile["width"] = output_width
|
|
profile["tiled"] = creation_options.get('TILED', 'YES') == 'YES'
|
|
profile["blockxsize"] = creation_options.get('BLOCKXSIZE', 512)
|
|
profile["blockysize"] = creation_options.get('BLOCKYSIZE', 512)
|
|
profile["compress"] = creation_options.get('COMPRESS', 'LZW')
|
|
profile["nodata"] = src_nodata
|
|
|
|
# Creation opts
|
|
profile.update(creation_options)
|
|
|
|
# create destination file
|
|
with rasterio.open(output_dem, "w", **profile) as dstrast:
|
|
|
|
for idx, dst_window in dstrast.block_windows():
|
|
|
|
left, bottom, right, top = dstrast.window_bounds(dst_window)
|
|
|
|
blocksize = dst_window.width
|
|
dst_rows, dst_cols = (dst_window.height, dst_window.width)
|
|
|
|
# initialize array destined for the block
|
|
dst_count = first.count
|
|
dst_shape = (dst_count, dst_rows, dst_cols)
|
|
|
|
dstarr = np.zeros(dst_shape, dtype=dtype)
|
|
distsum = np.zeros(dst_shape, dtype=dtype)
|
|
small_distance = 0.001953125
|
|
|
|
for src_d, src_e in sources:
|
|
# The full_cover behavior is problematic here as it includes
|
|
# extra pixels along the bottom right when the sources are
|
|
# slightly misaligned
|
|
#
|
|
# src_window = get_window(left, bottom, right, top,
|
|
# src.transform, precision=precision)
|
|
#
|
|
# With rio merge this just adds an extra row, but when the
|
|
# imprecision occurs at each block, you get artifacts
|
|
|
|
nodata = src_d.nodatavals[0]
|
|
|
|
# Alternative, custom get_window using rounding
|
|
src_window_d = tuple(zip(rowcol(
|
|
src_d.transform, left, top, op=round, precision=precision
|
|
), rowcol(
|
|
src_d.transform, right, bottom, op=round, precision=precision
|
|
)))
|
|
|
|
src_window_e = tuple(zip(rowcol(
|
|
src_e.transform, left, top, op=round, precision=precision
|
|
), rowcol(
|
|
src_e.transform, right, bottom, op=round, precision=precision
|
|
)))
|
|
|
|
temp_d = np.zeros(dst_shape, dtype=dtype)
|
|
temp_d = src_d.read(
|
|
out=temp_d, window=src_window_d, boundless=True, masked=False
|
|
)
|
|
|
|
temp_e = np.zeros(dst_shape, dtype=dtype)
|
|
temp_e = src_e.read(
|
|
out=temp_e, window=src_window_e, boundless=True, masked=False
|
|
)
|
|
|
|
# Set NODATA areas in the euclidean map to a very low value
|
|
# so that:
|
|
# - Areas with overlap prioritize DEM layers' cells that
|
|
# are far away from NODATA areas
|
|
# - Areas that have no overlap are included in the final result
|
|
# even if they are very close to a NODATA cell
|
|
temp_e[temp_e==0] = small_distance
|
|
temp_e[temp_d==nodata] = 0
|
|
|
|
np.multiply(temp_d, temp_e, out=temp_d)
|
|
np.add(dstarr, temp_d, out=dstarr)
|
|
np.add(distsum, temp_e, out=distsum)
|
|
|
|
np.divide(dstarr, distsum, out=dstarr, where=distsum[0] != 0.0)
|
|
|
|
# Perform nearest neighbor interpolation on areas where two or more rasters overlap
|
|
# but where both rasters have only interpolated data. This prevents the creation
|
|
# of artifacts that average areas of interpolation.
|
|
indices = ndimage.distance_transform_edt(np.logical_and(distsum < 1, distsum > small_distance),
|
|
return_distances=False,
|
|
return_indices=True)
|
|
dstarr = dstarr[tuple(indices)]
|
|
|
|
dstarr[dstarr == 0.0] = src_nodata
|
|
|
|
dstrast.write(dstarr, window=dst_window)
|
|
|
|
return output_dem
|