OpenDroneMap-ODM/opendm/orthophoto.py

282 wiersze
11 KiB
Python

import os
from opendm import log
from opendm import system
from opendm.cropper import Cropper
from opendm.concurrency import get_max_memory
import math
import numpy as np
import rasterio
import fiona
from scipy import ndimage
from rasterio.transform import Affine, rowcol
from rasterio.mask import mask
from opendm import io
def get_orthophoto_vars(args):
return {
'TILED': 'NO' if args.orthophoto_no_tiled else 'YES',
'COMPRESS': args.orthophoto_compression,
'PREDICTOR': '2' if args.orthophoto_compression in ['LZW', 'DEFLATE'] else '1',
'BIGTIFF': 'IF_SAFER',
'BLOCKXSIZE': 512,
'BLOCKYSIZE': 512,
'NUM_THREADS': args.max_concurrency
}
def build_overviews(orthophoto_file):
log.ODM_INFO("Building Overviews")
kwargs = {'orthophoto': orthophoto_file}
# Run gdaladdo
system.run('gdaladdo -ro -r average '
'--config BIGTIFF_OVERVIEW IF_SAFER '
'--config COMPRESS_OVERVIEW JPEG '
'{orthophoto} 2 4 8 16'.format(**kwargs))
def generate_png(orthophoto_file):
log.ODM_INFO("Generating PNG")
base, ext = os.path.splitext(orthophoto_file)
orthophoto_png = base + '.png'
system.run('gdal_translate -of png "%s" "%s" '
'--config GDAL_CACHEMAX %s%% ' % (orthophoto_file, orthophoto_png, get_max_memory()))
def post_orthophoto_steps(args, bounds_file_path, orthophoto_file):
if args.crop > 0:
Cropper.crop(bounds_file_path, orthophoto_file, get_orthophoto_vars(args), keep_original=not args.optimize_disk_space, warp_options=['-dstalpha'])
if args.build_overviews:
build_overviews(orthophoto_file)
if args.orthophoto_png:
generate_png(orthophoto_file)
def compute_mask_raster(input_raster, vector_mask, output_raster, blend_distance=20, only_max_coords_feature=False):
if not os.path.exists(input_raster):
log.ODM_WARNING("Cannot mask raster, %s does not exist" % input_raster)
return
if not os.path.exists(vector_mask):
log.ODM_WARNING("Cannot mask raster, %s does not exist" % vector_mask)
return
log.ODM_INFO("Computing mask raster: %s" % output_raster)
with rasterio.open(input_raster, 'r') as rast:
with fiona.open(vector_mask) as src:
burn_features = src
if only_max_coords_feature:
max_coords_count = 0
max_coords_feature = None
for feature in src:
if feature is not None:
# No complex shapes
if len(feature['geometry']['coordinates'][0]) > max_coords_count:
max_coords_count = len(feature['geometry']['coordinates'][0])
max_coords_feature = feature
if max_coords_feature is not None:
burn_features = [max_coords_feature]
shapes = [feature["geometry"] for feature in burn_features]
out_image, out_transform = mask(rast, shapes, nodata=0)
if blend_distance > 0:
if out_image.shape[0] >= 4:
# alpha_band = rast.dataset_mask()
alpha_band = out_image[-1]
dist_t = ndimage.distance_transform_edt(alpha_band)
dist_t[dist_t <= blend_distance] /= blend_distance
dist_t[dist_t > blend_distance] = 1
np.multiply(alpha_band, dist_t, out=alpha_band, casting="unsafe")
else:
log.ODM_WARNING("%s does not have an alpha band, cannot blend cutline!" % input_raster)
with rasterio.open(output_raster, 'w', **rast.profile) as dst:
dst.colorinterp = rast.colorinterp
dst.write(out_image)
return output_raster
def feather_raster(input_raster, output_raster, blend_distance=20):
if not os.path.exists(input_raster):
log.ODM_WARNING("Cannot feather raster, %s does not exist" % input_raster)
return
log.ODM_INFO("Computing feather raster: %s" % output_raster)
with rasterio.open(input_raster, 'r') as rast:
out_image = rast.read()
if blend_distance > 0:
if out_image.shape[0] >= 4:
alpha_band = out_image[-1]
dist_t = ndimage.distance_transform_edt(alpha_band)
dist_t[dist_t <= blend_distance] /= blend_distance
dist_t[dist_t > blend_distance] = 1
np.multiply(alpha_band, dist_t, out=alpha_band, casting="unsafe")
else:
log.ODM_WARNING("%s does not have an alpha band, cannot feather raster!" % input_raster)
with rasterio.open(output_raster, 'w', **rast.profile) as dst:
dst.colorinterp = rast.colorinterp
dst.write(out_image)
return output_raster
def merge(input_ortho_and_ortho_cuts, output_orthophoto, orthophoto_vars={}):
"""
Based on https://github.com/mapbox/rio-merge-rgba/
Merge orthophotos around cutlines using a blend buffer.
"""
inputs = []
bounds=None
precision=7
for o, c in input_ortho_and_ortho_cuts:
if not io.file_exists(o):
log.ODM_WARNING("%s does not exist. Will skip from merged orthophoto." % o)
continue
if not io.file_exists(c):
log.ODM_WARNING("%s does not exist. Will skip from merged orthophoto." % c)
continue
inputs.append((o, c))
if len(inputs) == 0:
log.ODM_WARNING("No input orthophotos, skipping merge.")
return
with rasterio.open(inputs[0][0]) as first:
res = first.res
dtype = first.dtypes[0]
profile = first.profile
num_bands = first.meta['count'] - 1 # minus alpha
colorinterp = first.colorinterp
log.ODM_INFO("%s valid orthophoto rasters to merge" % len(inputs))
sources = [(rasterio.open(o), rasterio.open(c)) for o,c in inputs]
# scan input files.
# while we're at it, validate assumptions about inputs
xs = []
ys = []
for src, _ in sources:
left, bottom, right, top = src.bounds
xs.extend([left, right])
ys.extend([bottom, top])
if src.profile["count"] < 4:
raise ValueError("Inputs must be at least 4-band rasters")
dst_w, dst_s, dst_e, dst_n = min(xs), min(ys), max(xs), max(ys)
log.ODM_INFO("Output bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
output_transform = Affine.translation(dst_w, dst_n)
output_transform *= Affine.scale(res[0], -res[1])
# Compute output array shape. We guarantee it will cover the output
# bounds completely.
output_width = int(math.ceil((dst_e - dst_w) / res[0]))
output_height = int(math.ceil((dst_n - dst_s) / res[1]))
# Adjust bounds to fit.
dst_e, dst_s = output_transform * (output_width, output_height)
log.ODM_INFO("Output width: %d, height: %d" % (output_width, output_height))
log.ODM_INFO("Adjusted bounds: %r %r %r %r" % (dst_w, dst_s, dst_e, dst_n))
profile["transform"] = output_transform
profile["height"] = output_height
profile["width"] = output_width
profile["tiled"] = orthophoto_vars.get('TILED', 'YES') == 'YES'
profile["blockxsize"] = orthophoto_vars.get('BLOCKXSIZE', 512)
profile["blockysize"] = orthophoto_vars.get('BLOCKYSIZE', 512)
profile["compress"] = orthophoto_vars.get('COMPRESS', 'LZW')
profile["predictor"] = orthophoto_vars.get('PREDICTOR', '2')
profile["bigtiff"] = orthophoto_vars.get('BIGTIFF', 'IF_SAFER')
profile.update()
# create destination file
with rasterio.open(output_orthophoto, "w", **profile) as dstrast:
dstrast.colorinterp = colorinterp
for idx, dst_window in dstrast.block_windows():
left, bottom, right, top = dstrast.window_bounds(dst_window)
blocksize = dst_window.width
dst_rows, dst_cols = (dst_window.height, dst_window.width)
# initialize array destined for the block
dst_count = first.count
dst_shape = (dst_count, dst_rows, dst_cols)
dstarr = np.zeros(dst_shape, dtype=dtype)
# First pass, write all rasters naively without blending
for src, _ in sources:
src_window = tuple(zip(rowcol(
src.transform, left, top, op=round, precision=precision
), rowcol(
src.transform, right, bottom, op=round, precision=precision
)))
temp = np.zeros(dst_shape, dtype=dtype)
temp = src.read(
out=temp, window=src_window, boundless=True, masked=False
)
# pixels without data yet are available to write
write_region = np.logical_and(
(dstarr[-1] == 0), (temp[-1] != 0) # 0 is nodata
)
np.copyto(dstarr, temp, where=write_region)
# check if dest has any nodata pixels available
if np.count_nonzero(dstarr[-1]) == blocksize:
break
# Second pass, write all feathered rasters
# blending the edges
for src, _ in sources:
src_window = tuple(zip(rowcol(
src.transform, left, top, op=round, precision=precision
), rowcol(
src.transform, right, bottom, op=round, precision=precision
)))
temp = np.zeros(dst_shape, dtype=dtype)
temp = src.read(
out=temp, window=src_window, boundless=True, masked=False
)
where = temp[-1] != 0
for b in range(0, num_bands):
blended = temp[-1] / 255.0 * temp[b] + (1 - temp[-1] / 255.0) * dstarr[b]
np.copyto(dstarr[b], blended, casting='unsafe', where=where)
dstarr[-1][where] = 255.0
# check if dest has any nodata pixels available
if np.count_nonzero(dstarr[-1]) == blocksize:
break
# Third pass, write cut rasters
# blending the cutlines
for _, cut in sources:
src_window = tuple(zip(rowcol(
cut.transform, left, top, op=round, precision=precision
), rowcol(
cut.transform, right, bottom, op=round, precision=precision
)))
temp = np.zeros(dst_shape, dtype=dtype)
temp = cut.read(
out=temp, window=src_window, boundless=True, masked=False
)
# For each band, average alpha values between
# destination raster and cut raster
for b in range(0, num_bands):
blended = temp[-1] / 255.0 * temp[b] + (1 - temp[-1] / 255.0) * dstarr[b]
np.copyto(dstarr[b], blended, casting='unsafe', where=temp[-1]!=0)
dstrast.write(dstarr, window=dst_window)
return output_orthophoto