OpenDroneMap-ODM/scripts/splitmerge.py

148 wiersze
6.0 KiB
Python

import os
import shutil
from opendm import log
from opendm.osfm import OSFMContext, get_submodel_argv, get_submodel_paths
from opendm import types
from opendm import io
from opendm import system
from opendm.dem import pdal
from opensfm.large import metadataset
from pipes import quote
class ODMSplitStage(types.ODM_Stage):
def process(self, args, outputs):
tree = outputs['tree']
reconstruction = outputs['reconstruction']
photos = reconstruction.photos
outputs['large'] = len(photos) > args.split
if outputs['large']:
octx = OSFMContext(tree.opensfm)
split_done_file = octx.path("split_done.txt")
if not io.file_exists(split_done_file) or self.rerun():
log.ODM_INFO("Large dataset detected (%s photos) and split set at %s. Preparing split merge." % (len(photos), args.split))
config = [
"submodels_relpath: ../submodels/opensfm",
"submodel_relpath_template: ../submodels/submodel_%04d/opensfm",
"submodel_images_relpath_template: ../submodels/submodel_%04d/images",
"submodel_size: %s" % args.split,
"submodel_overlap: %s" % args.split_overlap,
]
octx.setup(args, tree.dataset_raw, photos, gcp_path=tree.odm_georeferencing_gcp, append_config=config, rerun=self.rerun())
octx.feature_matching(self.rerun())
# Create submodels
if not io.dir_exists(tree.submodels_path) or self.rerun():
if io.dir_exists(tree.submodels_path):
log.ODM_WARNING("Removing existing submodels directory: %s" % tree.submodels_path)
shutil.rmtree(tree.submodels_path)
octx.run("create_submodels")
else:
log.ODM_WARNING("Submodels directory already exist at: %s" % tree.submodels_path)
# TODO: on a network workflow we probably stop here
# and let NodeODM take over
# exit(0)
# Find paths of all submodels
mds = metadataset.MetaDataSet(tree.opensfm)
submodel_paths = [os.path.abspath(p) for p in mds.get_submodel_paths()]
# Reconstruct each submodel
log.ODM_INFO("Dataset has been split into %s submodels. Reconstructing each submodel..." % len(submodel_paths))
for sp in submodel_paths:
log.ODM_INFO("Reconstructing %s" % sp)
OSFMContext(sp).reconstruct(self.rerun())
# Align
alignment_file = octx.path('alignment_done.txt')
if not io.file_exists(alignment_file) or self.rerun():
log.ODM_INFO("Aligning submodels...")
octx.run('align_submodels')
with open(alignment_file, 'w') as fout:
fout.write("Alignment done!\n")
else:
log.ODM_WARNING('Found a alignment matching done progress file in: %s' % alignment_file)
# Dense reconstruction for each submodel
for sp in submodel_paths:
# TODO: network workflow
# We have already done matching
sp_octx = OSFMContext(sp)
sp_octx.mark_feature_matching_done()
submodel_name = os.path.basename(os.path.abspath(sp_octx.path("..")))
# Aligned reconstruction is in reconstruction.aligned.json
# We need to replace reconstruction.json with it
aligned_recon = sp_octx.path('reconstruction.aligned.json')
main_recon = sp_octx.path('reconstruction.json')
if not io.file_exists(aligned_recon):
log.ODM_WARNING("Submodel %s does not have an aligned reconstruction (%s). "
"This could mean that the submodel could not be reconstructed "
" (are there enough features to reconstruct it?). Skipping." % (submodel_name, aligned_recon))
continue
if io.file_exists(main_recon):
os.remove(main_recon)
os.rename(aligned_recon, main_recon)
log.ODM_DEBUG("%s is now %s" % (aligned_recon, main_recon))
log.ODM_INFO("========================")
log.ODM_INFO("Processing %s" % submodel_name)
log.ODM_INFO("========================")
argv = get_submodel_argv(args, tree.submodels_path, submodel_name)
# Re-run the ODM toolchain on the submodel
system.run(" ".join(map(quote, argv)), env_vars=os.environ.copy())
with open(split_done_file, 'w') as fout:
fout.write("Split done!\n")
else:
log.ODM_WARNING('Found a split done file in: %s' % split_done_file)
else:
log.ODM_INFO("Normal dataset, will process all at once.")
class ODMMergeStage(types.ODM_Stage):
def process(self, args, outputs):
from opendm import grass_engine
tree = outputs['tree']
reconstruction = outputs['reconstruction']
if outputs['large']:
# Merge point clouds
all_point_clouds = get_submodel_paths(tree.submodels_path, "odm_georeferencing", "odm_georeferenced_model.laz")
pdal.merge_point_clouds(all_point_clouds, tree.odm_georeferencing_model_laz, args.verbose)
# Merge orthophoto
# TODO: crop ortho if necessary
# Merge DEM
# TODO: crop DEM if necessary
# Stop the pipeline short! We're done.
self.next_stage = None
else:
log.ODM_INFO("Normal dataset, nothing to merge.")