kopia lustrzana https://github.com/OpenDroneMap/ODM
				
				
				
			
		
			
				
	
	
		
			509 wiersze
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			509 wiersze
		
	
	
		
			21 KiB
		
	
	
	
		
			Python
		
	
	
| import time
 | |
| import datetime
 | |
| import os
 | |
| import sys
 | |
| import threading
 | |
| import signal
 | |
| import zipfile
 | |
| import glob
 | |
| from opendm import log
 | |
| from opendm import system
 | |
| from pyodm import Node, exceptions
 | |
| from pyodm.utils import AtomicCounter
 | |
| from pyodm.types import TaskStatus
 | |
| from osfm import OSFMContext, get_submodel_args_dict, get_submodel_argv
 | |
| from pipes import quote
 | |
| 
 | |
| try:
 | |
|     import queue
 | |
| except ImportError:
 | |
|     import Queue as queue
 | |
| 
 | |
| class LocalRemoteExecutor:
 | |
|     """
 | |
|     A class for performing OpenSfM reconstructions and full ODM pipeline executions
 | |
|     using a mix of local and remote processing. Tasks are executed locally one at a time
 | |
|     and remotely until a node runs out of available slots for processing. This allows us
 | |
|     to use the processing power of the current machine as well as offloading tasks to a 
 | |
|     network node.
 | |
|     """
 | |
|     def __init__(self, nodeUrl, rerun = False):
 | |
|         self.node = Node.from_url(nodeUrl)
 | |
|         self.params = {
 | |
|             'tasks': [],
 | |
|             'threads': [],
 | |
|             'rerun': rerun
 | |
|         }
 | |
|         self.node_online = True
 | |
| 
 | |
|         log.ODM_INFO("LRE: Initializing using cluster node %s:%s" % (self.node.host, self.node.port))
 | |
|         try:
 | |
|             info = self.node.info()
 | |
|             log.ODM_INFO("LRE: Node is online and running %s version %s"  % (info.engine, info.engine_version))
 | |
|         except exceptions.NodeConnectionError:
 | |
|             log.ODM_WARNING("LRE: The node seems to be offline! We'll still process the dataset, but it's going to run entirely locally.")
 | |
|             self.node_online = False
 | |
|         except Exception as e:
 | |
|             log.ODM_ERROR("LRE: An unexpected problem happened while opening the node connection: %s" % str(e))
 | |
|             exit(1)
 | |
| 
 | |
|     def set_projects(self, paths):
 | |
|         self.project_paths = paths
 | |
| 
 | |
|     def run_reconstruction(self):
 | |
|         self.run(ReconstructionTask)
 | |
| 
 | |
|     def run_toolchain(self):
 | |
|         self.run(ToolchainTask)
 | |
| 
 | |
|     def run(self, taskClass):
 | |
|         if not self.project_paths:
 | |
|             return
 | |
| 
 | |
|         # Shared variables across threads
 | |
|         class nonloc:
 | |
|             error = None
 | |
|             local_processing = False
 | |
|             max_remote_tasks = None
 | |
|         
 | |
|         calculate_task_limit_lock = threading.Lock()
 | |
|         finished_tasks = AtomicCounter(0)
 | |
|         remote_running_tasks = AtomicCounter(0)
 | |
| 
 | |
|         # Create queue
 | |
|         q = queue.Queue()
 | |
|         for pp in self.project_paths:
 | |
|             log.ODM_INFO("LRE: Adding to queue %s" % pp)
 | |
|             q.put(taskClass(pp, self.node, self.params))
 | |
| 
 | |
|         def remove_task_safe(task):
 | |
|             try:
 | |
|                 removed = task.remove()
 | |
|             except exceptions.OdmError:
 | |
|                 removed = False
 | |
|             return removed
 | |
|         
 | |
|         def cleanup_remote_tasks():
 | |
|             if self.params['tasks']:
 | |
|                 log.ODM_WARNING("LRE: Attempting to cleanup remote tasks")
 | |
|             else:
 | |
|                 log.ODM_INFO("LRE: No remote tasks left to cleanup")
 | |
| 
 | |
|             for task in self.params['tasks']:
 | |
|                 log.ODM_INFO("LRE: Removing remote task %s... %s" % (task.uuid, 'OK' if remove_task_safe(task) else 'NO'))
 | |
| 
 | |
|         def handle_result(task, local, error = None, partial=False):
 | |
|             def cleanup_remote():
 | |
|                 if not partial and task.remote_task:
 | |
|                     log.ODM_INFO("LRE: Cleaning up remote task (%s)... %s" % (task.remote_task.uuid, 'OK' if remove_task_safe(task.remote_task) else 'NO'))
 | |
|                     self.params['tasks'].remove(task.remote_task)
 | |
|                     task.remote_task = None
 | |
| 
 | |
|             if error:
 | |
|                 log.ODM_WARNING("LRE: %s failed with: %s" % (task, str(error)))
 | |
|                 
 | |
|                 # Special case in which the error is caused by a SIGTERM signal
 | |
|                 # this means a local processing was terminated either by CTRL+C or 
 | |
|                 # by canceling the task.
 | |
|                 if str(error) == "Child was terminated by signal 15":
 | |
|                     system.exit_gracefully()
 | |
| 
 | |
|                 task_limit_reached = isinstance(error, NodeTaskLimitReachedException)
 | |
|                 if task_limit_reached:
 | |
|                     # Estimate the maximum number of tasks based on how many tasks
 | |
|                     # are currently running
 | |
|                     with calculate_task_limit_lock:
 | |
|                         if nonloc.max_remote_tasks is None:
 | |
|                             node_task_limit = 0
 | |
|                             for t in self.params['tasks']:
 | |
|                                 try:
 | |
|                                     info = t.info(with_output=-3)
 | |
|                                     if info.status == TaskStatus.RUNNING and info.processing_time >= 0 and len(info.output) >= 3:
 | |
|                                         node_task_limit += 1
 | |
|                                 except exceptions.OdmError:
 | |
|                                     pass
 | |
| 
 | |
|                             nonloc.max_remote_tasks = max(1, node_task_limit)
 | |
|                             log.ODM_INFO("LRE: Node task limit reached. Setting max remote tasks to %s" % node_task_limit)
 | |
|                                 
 | |
| 
 | |
|                 # Retry, but only if the error is not related to a task failure
 | |
|                 if task.retries < task.max_retries and not isinstance(error, exceptions.TaskFailedError):
 | |
|                     # Put task back in queue
 | |
|                     # Don't increment the retry counter if this task simply reached the task
 | |
|                     # limit count.
 | |
|                     if not task_limit_reached:
 | |
|                         task.retries += 1
 | |
|                     task.wait_until = datetime.datetime.now() + datetime.timedelta(seconds=task.retries * task.retry_timeout)
 | |
|                     cleanup_remote()
 | |
|                     q.task_done()
 | |
| 
 | |
|                     log.ODM_INFO("LRE: Re-queueing %s (retries: %s)" % (task, task.retries))
 | |
|                     q.put(task)
 | |
|                     if not local: remote_running_tasks.increment(-1)
 | |
|                     return
 | |
|                 else:
 | |
|                     nonloc.error = error
 | |
|                     finished_tasks.increment()
 | |
|                     if not local: remote_running_tasks.increment(-1)
 | |
|             else:
 | |
|                 if not partial:
 | |
|                     log.ODM_INFO("LRE: %s finished successfully" % task)
 | |
|                     finished_tasks.increment()
 | |
|                     if not local: remote_running_tasks.increment(-1)
 | |
| 
 | |
|             cleanup_remote()
 | |
|             if not partial: q.task_done()
 | |
|             
 | |
|         def local_worker():
 | |
|             while True:
 | |
|                 # Block until a new queue item is available
 | |
|                 task = q.get()
 | |
| 
 | |
|                 if task is None or nonloc.error is not None:
 | |
|                     q.task_done()
 | |
|                     break
 | |
| 
 | |
|                 # Process local
 | |
|                 try:
 | |
|                     nonloc.local_processing = True
 | |
|                     task.process(True, handle_result)
 | |
|                 except Exception as e:
 | |
|                     handle_result(task, True, e)
 | |
|                 finally:
 | |
|                     nonloc.local_processing = False
 | |
| 
 | |
| 
 | |
|         def remote_worker():
 | |
|             while True:
 | |
|                 # Block until a new queue item is available
 | |
|                 task = q.get()
 | |
| 
 | |
|                 if task is None or nonloc.error is not None:
 | |
|                     q.task_done()
 | |
|                     break
 | |
|                 
 | |
|                 # Yield to local processing
 | |
|                 if not nonloc.local_processing:
 | |
|                     log.ODM_INFO("LRE: Yielding to local processing, sending %s back to the queue" % task)
 | |
|                     q.put(task)
 | |
|                     q.task_done()
 | |
|                     time.sleep(0.05)
 | |
|                     continue
 | |
| 
 | |
|                 # If we've found an estimate of the limit on the maximum number of tasks
 | |
|                 # a node can process, we block until some tasks have completed
 | |
|                 if nonloc.max_remote_tasks is not None and remote_running_tasks.value >= nonloc.max_remote_tasks:
 | |
|                     q.put(task)
 | |
|                     q.task_done()
 | |
|                     time.sleep(2)
 | |
|                     continue
 | |
| 
 | |
|                 # Process remote
 | |
|                 try:
 | |
|                     remote_running_tasks.increment()
 | |
|                     task.process(False, handle_result)
 | |
|                 except Exception as e:
 | |
|                     handle_result(task, False, e)
 | |
|         
 | |
|         # Create queue thread
 | |
|         local_thread = threading.Thread(target=local_worker)
 | |
|         if self.node_online:
 | |
|             remote_thread = threading.Thread(target=remote_worker)
 | |
| 
 | |
|         system.add_cleanup_callback(cleanup_remote_tasks)
 | |
| 
 | |
|         # Start workers
 | |
|         local_thread.start()
 | |
|         if self.node_online:
 | |
|             remote_thread.start()
 | |
| 
 | |
|         # block until all tasks are done (or CTRL+C)
 | |
|         try:
 | |
|             while finished_tasks.value < len(self.project_paths) and nonloc.error is None:
 | |
|                 time.sleep(0.5)
 | |
|         except KeyboardInterrupt:
 | |
|             log.ODM_WARNING("LRE: CTRL+C")
 | |
|             system.exit_gracefully()
 | |
|         
 | |
|         # stop workers
 | |
|         q.put(None)
 | |
|         if self.node_online:
 | |
|             q.put(None)
 | |
| 
 | |
|         # Wait for queue thread
 | |
|         local_thread.join()
 | |
|         if self.node_online:
 | |
|             remote_thread.join()
 | |
| 
 | |
|         # Wait for all remains threads
 | |
|         for thrds in self.params['threads']:
 | |
|             thrds.join()
 | |
|         
 | |
|         system.remove_cleanup_callback(cleanup_remote_tasks)
 | |
|         cleanup_remote_tasks()
 | |
| 
 | |
|         if nonloc.error is not None:
 | |
|             # Try not to leak access token
 | |
|             if isinstance(nonloc.error, exceptions.NodeConnectionError):
 | |
|                 raise exceptions.NodeConnectionError("A connection error happened. Check the connection to the processing node and try again.")
 | |
|             else:
 | |
|                 raise nonloc.error
 | |
|         
 | |
| 
 | |
| class NodeTaskLimitReachedException(Exception):
 | |
|     pass
 | |
| 
 | |
| class Task:
 | |
|     def __init__(self, project_path, node, params, max_retries=5, retry_timeout=10):
 | |
|         self.project_path = project_path
 | |
|         self.node = node
 | |
|         self.params = params
 | |
|         self.wait_until = datetime.datetime.now() # Don't run this task until a certain time
 | |
|         self.max_retries = max_retries
 | |
|         self.retries = 0
 | |
|         self.retry_timeout = retry_timeout
 | |
|         self.remote_task = None
 | |
| 
 | |
|     def process(self, local, done):
 | |
|         def handle_result(error = None, partial=False):
 | |
|             done(self, local, error, partial)
 | |
| 
 | |
|         log.ODM_INFO("LRE: About to process %s %s" % (self, 'locally' if local else 'remotely'))
 | |
|         
 | |
|         if local:
 | |
|             self._process_local(handle_result) # Block until complete
 | |
|         else:
 | |
|             now = datetime.datetime.now()
 | |
|             if self.wait_until > now:
 | |
|                 wait_for = (self.wait_until - now).seconds + 1
 | |
|                 log.ODM_INFO("LRE: Waiting %s seconds before processing %s" % (wait_for, self))
 | |
|                 time.sleep(wait_for)
 | |
| 
 | |
|             # TODO: we could consider uploading multiple tasks
 | |
|             # in parallel. But since we are using the same node
 | |
|             # perhaps this wouldn't be a big speedup.
 | |
|             self._process_remote(handle_result) # Block until upload is complete
 | |
| 
 | |
|     def path(self, *paths):
 | |
|         return os.path.join(self.project_path, *paths)
 | |
| 
 | |
|     def touch(self, file):
 | |
|         with open(file, 'w') as fout:
 | |
|             fout.write("Done!\n")
 | |
| 
 | |
|     def create_seed_payload(self, paths, touch_files=[]):
 | |
|         paths = filter(os.path.exists, map(lambda p: self.path(p), paths))
 | |
|         outfile = self.path("seed.zip")
 | |
| 
 | |
|         with zipfile.ZipFile(outfile, "w", compression=zipfile.ZIP_DEFLATED, allowZip64=True) as zf:
 | |
|             for p in paths:
 | |
|                 if os.path.isdir(p):
 | |
|                     for root, _, filenames in os.walk(p):
 | |
|                         for filename in filenames:
 | |
|                             filename = os.path.join(root, filename)
 | |
|                             filename = os.path.normpath(filename)
 | |
|                             zf.write(filename, os.path.relpath(filename, self.project_path))
 | |
|                 else:
 | |
|                     zf.write(p, os.path.relpath(p, self.project_path))
 | |
| 
 | |
|             for tf in touch_files:
 | |
|                 zf.writestr(tf, "")
 | |
| 
 | |
|         return outfile
 | |
| 
 | |
|     def _process_local(self, done):
 | |
|         try:
 | |
|             self.process_local()
 | |
|             done()
 | |
|         except Exception as e:
 | |
|             done(e)
 | |
|     
 | |
|     def _process_remote(self, done):
 | |
|         try:
 | |
|             self.process_remote(done)
 | |
|             done(error=None, partial=True) # Upload is completed, but processing is not (partial)
 | |
|         except Exception as e:
 | |
|             done(e)
 | |
| 
 | |
|     def execute_remote_task(self, done, seed_files = [], seed_touch_files = [], outputs = [], ):
 | |
|         """
 | |
|         Run a task by creating a seed file with all files in seed_files, optionally
 | |
|         creating empty files (for flag checks) specified in seed_touch_files
 | |
|         and returning the results specified in outputs. Yeah it's pretty cool!
 | |
|         """
 | |
|         seed_file = self.create_seed_payload(seed_files, touch_files=seed_touch_files)
 | |
|         
 | |
|         # Find all images
 | |
|         images = glob.glob(self.path("images/**"))
 | |
| 
 | |
|         # Add GCP (optional)
 | |
|         if os.path.exists(self.path("gcp_list.txt")):
 | |
|             images.append(self.path("gcp_list.txt"))
 | |
|         
 | |
|         # Add seed file
 | |
|         images.append(seed_file)
 | |
| 
 | |
|         class nonloc:
 | |
|             last_update = 0
 | |
| 
 | |
|         def print_progress(percentage):
 | |
|             if (time.time() - nonloc.last_update >= 2) or int(percentage) == 100:
 | |
|                 log.ODM_INFO("LRE: Upload of %s at [%s%%]" % (self, int(percentage)))
 | |
|                 nonloc.last_update = time.time()
 | |
| 
 | |
|         # Upload task
 | |
|         task = self.node.create_task(images, 
 | |
|                 get_submodel_args_dict(),
 | |
|                 progress_callback=print_progress,
 | |
|                 skip_post_processing=True,
 | |
|                 outputs=outputs)
 | |
|         self.remote_task = task
 | |
| 
 | |
|         # Cleanup seed file
 | |
|         os.remove(seed_file)
 | |
| 
 | |
|         # Keep track of tasks for cleanup
 | |
|         self.params['tasks'].append(task)
 | |
| 
 | |
|         # Check status
 | |
|         info = task.info()
 | |
|         if info.status in [TaskStatus.RUNNING, TaskStatus.COMPLETED]:
 | |
|             def monitor():
 | |
|                 class nonloc:
 | |
|                     status_callback_calls = 0
 | |
|                     last_update = 0
 | |
| 
 | |
|                 def status_callback(info):
 | |
|                     # If a task switches from RUNNING to QUEUED, then we need to 
 | |
|                     # stop the process and re-add the task to the queue.
 | |
|                     if info.status == TaskStatus.QUEUED:
 | |
|                         log.ODM_WARNING("LRE: %s (%s) turned from RUNNING to QUEUED. Re-adding to back of the queue." % (self, task.uuid))
 | |
|                         raise NodeTaskLimitReachedException("Delayed task limit reached")
 | |
|                     elif info.status == TaskStatus.RUNNING:
 | |
|                         # Print a status message once in a while
 | |
|                         nonloc.status_callback_calls += 1
 | |
|                         if nonloc.status_callback_calls > 30:
 | |
|                             log.ODM_INFO("LRE: %s (%s) is still running" % (self, task.uuid))
 | |
|                             nonloc.status_callback_calls = 0
 | |
|                 try:
 | |
|                     def print_progress(percentage):
 | |
|                         if (time.time() - nonloc.last_update >= 2) or int(percentage) == 100:
 | |
|                             log.ODM_INFO("LRE: Download of %s at [%s%%]" % (self, int(percentage)))
 | |
|                             nonloc.last_update = time.time()
 | |
| 
 | |
|                     task.wait_for_completion(status_callback=status_callback)
 | |
|                     log.ODM_INFO("LRE: Downloading assets for %s" % self)
 | |
|                     task.download_assets(self.project_path, progress_callback=print_progress)
 | |
|                     log.ODM_INFO("LRE: Downloaded and extracted assets for %s" % self)
 | |
|                     done()
 | |
|                 except exceptions.TaskFailedError as e:
 | |
|                     # Try to get output
 | |
|                     try:
 | |
|                         output_lines = task.output()
 | |
| 
 | |
|                         # Save to file
 | |
|                         error_log_path = self.path("error.log")
 | |
|                         with open(error_log_path, 'w') as f:
 | |
|                             f.write('\n'.join(output_lines) + '\n')
 | |
| 
 | |
|                         msg = "(%s) failed with task output: %s\nFull log saved at %s" % (task.uuid, "\n".join(output_lines[-10:]), error_log_path)
 | |
|                         done(exceptions.TaskFailedError(msg))
 | |
|                     except:
 | |
|                         log.ODM_WARNING("LRE: Could not retrieve task output for %s (%s)" % (self, task.uuid))
 | |
|                         done(e)
 | |
|                 except Exception as e:
 | |
|                     done(e)
 | |
| 
 | |
|             # Launch monitor thread and return
 | |
|             t = threading.Thread(target=monitor)
 | |
|             self.params['threads'].append(t)
 | |
|             t.start()
 | |
|         elif info.status == TaskStatus.QUEUED:
 | |
|             raise NodeTaskLimitReachedException("Task limit reached")
 | |
|         else:
 | |
|             raise Exception("Could not send task to node, task status is %s" % str(info.status))
 | |
| 
 | |
|     
 | |
|     def process_local(self):
 | |
|         raise NotImplementedError()
 | |
|     
 | |
|     def process_remote(self, done):
 | |
|         raise NotImplementedError()
 | |
| 
 | |
|     def __str__(self):
 | |
|         return os.path.basename(self.project_path)
 | |
| 
 | |
| 
 | |
| class ReconstructionTask(Task):
 | |
|     def process_local(self):
 | |
|         octx = OSFMContext(self.path("opensfm"))
 | |
|         log.ODM_INFO("==================================")
 | |
|         log.ODM_INFO("Local Reconstruction %s" % octx.name())
 | |
|         log.ODM_INFO("==================================")
 | |
|         octx.feature_matching(self.params['rerun'])
 | |
|         octx.reconstruct(self.params['rerun'])
 | |
|     
 | |
|     def process_remote(self, done):
 | |
|         octx = OSFMContext(self.path("opensfm"))
 | |
|         if not octx.is_feature_matching_done() or not octx.is_reconstruction_done() or self.params['rerun']:
 | |
|             self.execute_remote_task(done, seed_files=["opensfm/exif", 
 | |
|                                                 "opensfm/camera_models.json",
 | |
|                                                 "opensfm/reference_lla.json"],
 | |
|                                     seed_touch_files=["opensfm/split_merge_stop_at_reconstruction.txt"],
 | |
|                                     outputs=["opensfm/matches", "opensfm/features", 
 | |
|                                             "opensfm/reconstruction.json",
 | |
|                                             "opensfm/tracks.csv",
 | |
|                                             "cameras.json"])
 | |
|         else:
 | |
|             log.ODM_INFO("Already processed feature matching and reconstruction for %s" % octx.name())
 | |
|             done()
 | |
| 
 | |
| class ToolchainTask(Task):
 | |
|     def process_local(self):
 | |
|         completed_file = self.path("toolchain_completed.txt")
 | |
|         submodel_name = os.path.basename(self.project_path)
 | |
|         
 | |
|         if not os.path.exists(completed_file) or self.params['rerun']:
 | |
|             log.ODM_INFO("=============================")
 | |
|             log.ODM_INFO("Local Toolchain %s" % self)
 | |
|             log.ODM_INFO("=============================")
 | |
| 
 | |
|             submodels_path = os.path.abspath(self.path(".."))
 | |
|             project_name = os.path.basename(os.path.abspath(os.path.join(submodels_path, "..")))
 | |
|             argv = get_submodel_argv(project_name, submodels_path, submodel_name)
 | |
| 
 | |
|             # Re-run the ODM toolchain on the submodel
 | |
|             system.run(" ".join(map(quote, argv)), env_vars=os.environ.copy())
 | |
| 
 | |
|             # This will only get executed if the command above succeeds
 | |
|             self.touch(completed_file)
 | |
|         else:
 | |
|             log.ODM_INFO("Already processed toolchain for %s" % submodel_name)
 | |
|     
 | |
|     def process_remote(self, done):
 | |
|         completed_file = self.path("toolchain_completed.txt")
 | |
|         submodel_name = os.path.basename(self.project_path)
 | |
| 
 | |
|         def handle_result(error = None):
 | |
|             # Mark task as completed if no error
 | |
|             if error is None:
 | |
|                 self.touch(completed_file)
 | |
|             done(error=error)
 | |
| 
 | |
|         if not os.path.exists(completed_file) or self.params['rerun']:
 | |
|             self.execute_remote_task(handle_result, seed_files=["opensfm/camera_models.json",
 | |
|                                                 "opensfm/reference_lla.json",
 | |
|                                                 "opensfm/reconstruction.json",
 | |
|                                                 "opensfm/tracks.csv"],
 | |
|                                 seed_touch_files=["opensfm/features/empty",
 | |
|                                                 "opensfm/matches/empty",
 | |
|                                                 "opensfm/exif/empty"],
 | |
|                                 outputs=["odm_orthophoto/odm_orthophoto.tif",
 | |
|                                         "odm_orthophoto/cutline.gpkg",
 | |
|                                         "odm_orthophoto/odm_orthophoto_cut.tif",
 | |
|                                         "odm_dem",
 | |
|                                         "odm_georeferencing"])
 | |
|         else:
 | |
|             log.ODM_INFO("Already processed toolchain for %s" % submodel_name)
 | |
|             handle_result() |