OpenDroneMap-ODM/stages/dataset.py

338 wiersze
16 KiB
Python

import os
import json
from opendm import context
from opendm import io
from opendm import types
from opendm.photo import PhotoCorruptedException
from opendm import log
from opendm import system
from opendm.geo import GeoFile
from shutil import copyfile
from opendm import progress
from opendm import boundary
from opendm import ai
from opendm.skyremoval.skyfilter import SkyFilter
from opendm.bgfilter import BgFilter
from opendm.concurrency import parallel_map
from opendm.video.video2dataset import Parameters, Video2Dataset
def save_images_database(photos, database_file):
with open(database_file, 'w') as f:
f.write(json.dumps([p.__dict__ for p in photos]))
log.ODM_INFO("Wrote images database: %s" % database_file)
def load_images_database(database_file):
# Empty is used to create types.ODM_Photo class
# instances without calling __init__
class Empty:
pass
result = []
log.ODM_INFO("Loading images database: %s" % database_file)
with open(database_file, 'r') as f:
photos_json = json.load(f)
for photo_json in photos_json:
p = Empty()
for k in photo_json:
setattr(p, k, photo_json[k])
p.__class__ = types.ODM_Photo
result.append(p)
return result
class ODMLoadDatasetStage(types.ODM_Stage):
def process(self, args, outputs):
outputs['start_time'] = system.now_raw()
tree = types.ODM_Tree(args.project_path, args.gcp, args.geo, args.align)
outputs['tree'] = tree
if io.file_exists(tree.benchmarking):
# Delete the previously made file
try:
os.remove(tree.benchmarking)
with open(tree.benchmarking, 'a') as b:
b.write('ODM Benchmarking file created %s\nNumber of Cores: %s\n\n' % (system.now(), context.num_cores))
except Exception as e:
log.ODM_WARNING("Cannot write benchmark file: %s" % str(e))
def valid_filename(filename, supported_extensions):
(pathfn, ext) = os.path.splitext(filename)
return ext.lower() in supported_extensions and pathfn[-5:] != "_mask"
# Get supported images from dir
def get_images(in_dir):
entries = os.listdir(in_dir)
valid, rejects = [], []
for f in entries:
if valid_filename(f, context.supported_extensions):
valid.append(f)
else:
rejects.append(f)
return valid, rejects
def search_video_files(in_dir):
entries = os.listdir(in_dir)
return [os.path.join(in_dir, f) for f in entries if valid_filename(f, context.supported_video_extensions)]
def find_mask(photo_path, masks):
(pathfn, ext) = os.path.splitext(os.path.basename(photo_path))
k = "{}_mask".format(pathfn)
mask = masks.get(k)
if mask:
# Spaces are not supported due to OpenSfM's mask_list.txt format reqs
if not " " in mask:
return mask
else:
log.ODM_WARNING("Image mask {} has a space. Spaces are currently not supported for image masks.".format(mask))
# get images directory
images_dir = tree.dataset_raw
# define paths and create working directories
system.mkdir_p(tree.odm_georeferencing)
log.ODM_INFO('Loading dataset from: %s' % images_dir)
# check if we rerun cell or not
images_database_file = os.path.join(tree.root_path, 'images.json')
if not io.file_exists(images_database_file) or self.rerun():
if not os.path.exists(images_dir):
raise system.ExitException("There are no images in %s! Make sure that your project path and dataset name is correct. The current is set to: %s" % (images_dir, args.project_path))
# Check if we need to extract video frames
frames_db_file = os.path.join(images_dir, 'frames.json')
if not os.path.exists(frames_db_file) or self.rerun():
video_files = search_video_files(images_dir)
# If we're re-running the pipeline, and frames have been extracted during a previous run
# we need to remove those before re-extracting them
if len(video_files) > 0 and os.path.exists(frames_db_file) and self.rerun():
log.ODM_INFO("Re-run, removing previously extracted video frames")
frames = []
try:
with open(frames_db_file, 'r') as f:
frames = json.loads(f.read())
except Exception as e:
log.ODM_WARNING("Cannot check previous video extraction: %s" % str(e))
for f in frames:
fp = os.path.join(images_dir, f)
if os.path.isfile(fp):
os.remove(fp)
if len(video_files) > 0:
log.ODM_INFO("Found video files (%s), extracting frames" % len(video_files))
try:
params = Parameters({
"input": video_files,
"output": images_dir,
"blur_threshold": 200,
"distance_threshold": 10,
"black_ratio_threshold": 0.98,
"pixel_black_threshold": 0.30,
"use_srt": True,
"max_dimension": args.video_resolution,
"limit": args.video_limit,
})
v2d = Video2Dataset(params)
frames = v2d.ProcessVideo()
with open(frames_db_file, 'w') as f:
f.write(json.dumps([os.path.basename(f) for f in frames]))
except Exception as e:
log.ODM_WARNING("Could not extract video frames: %s" % str(e))
files, rejects = get_images(images_dir)
if files:
# create ODMPhoto list
path_files = [os.path.join(images_dir, f) for f in files]
# Lookup table for masks
masks = {}
for r in rejects:
(p, ext) = os.path.splitext(r)
if p[-5:] == "_mask" and ext.lower() in context.supported_extensions:
masks[p] = r
photos = []
with open(tree.dataset_list, 'w') as dataset_list:
log.ODM_INFO("Loading %s images" % len(path_files))
for f in path_files:
try:
p = types.ODM_Photo(f)
p.set_mask(find_mask(f, masks))
photos.append(p)
dataset_list.write(photos[-1].filename + '\n')
except PhotoCorruptedException:
log.ODM_WARNING("%s seems corrupted and will not be used" % os.path.basename(f))
# Check if a geo file is available
if tree.odm_geo_file is not None and os.path.isfile(tree.odm_geo_file):
log.ODM_INFO("Found image geolocation file")
gf = GeoFile(tree.odm_geo_file)
updated = 0
for p in photos:
entry = gf.get_entry(p.filename)
if entry:
p.update_with_geo_entry(entry)
p.compute_opk()
updated += 1
log.ODM_INFO("Updated %s image positions" % updated)
# GPSDOP override if we have GPS accuracy information (such as RTK)
if 'gps_accuracy_is_set' in args:
log.ODM_INFO("Forcing GPS DOP to %s for all images" % args.gps_accuracy)
for p in photos:
p.override_gps_dop(args.gps_accuracy)
# Override projection type
if args.camera_lens != "auto":
log.ODM_INFO("Setting camera lens to %s for all images" % args.camera_lens)
for p in photos:
p.override_camera_projection(args.camera_lens)
# Automatic sky removal
if args.sky_removal:
# For each image that :
# - Doesn't already have a mask, AND
# - Is not nadir (or if orientation info is missing, or if camera lens is fisheye), AND
# - There are no spaces in the image filename (OpenSfM requirement)
# Automatically generate a sky mask
# Generate list of sky images
sky_images = []
for p in photos:
if p.mask is None and (args.camera_lens in ['fisheye', 'spherical'] or p.pitch is None or (abs(p.pitch) > 20)) and (not " " in p.filename):
sky_images.append({'file': os.path.join(images_dir, p.filename), 'p': p})
if len(sky_images) > 0:
log.ODM_INFO("Automatically generating sky masks for %s images" % len(sky_images))
model = ai.get_model("skyremoval", "https://github.com/OpenDroneMap/SkyRemoval/releases/download/v1.0.5/model.zip", "v1.0.5")
if model is not None:
sf = SkyFilter(model=model)
def parallel_sky_filter(item):
try:
mask_file = sf.run_img(item['file'], images_dir)
# Check and set
if mask_file is not None and os.path.isfile(mask_file):
item['p'].set_mask(os.path.basename(mask_file))
log.ODM_INFO("Wrote %s" % os.path.basename(mask_file))
else:
log.ODM_WARNING("Cannot generate mask for %s" % img)
except Exception as e:
log.ODM_WARNING("Cannot generate mask for %s: %s" % (img, str(e)))
parallel_map(parallel_sky_filter, sky_images, max_workers=args.max_concurrency)
log.ODM_INFO("Sky masks generation completed!")
else:
log.ODM_WARNING("Cannot load AI model (you might need to be connected to the internet?)")
else:
log.ODM_INFO("No sky masks will be generated (masks already provided, or images are nadir)")
# End sky removal
# Automatic background removal
if args.bg_removal:
# For each image that :
# - Doesn't already have a mask, AND
# - There are no spaces in the image filename (OpenSfM requirement)
# Generate list of sky images
bg_images = []
for p in photos:
if p.mask is None and (not " " in p.filename):
bg_images.append({'file': os.path.join(images_dir, p.filename), 'p': p})
if len(bg_images) > 0:
log.ODM_INFO("Automatically generating background masks for %s images" % len(bg_images))
model = ai.get_model("bgremoval", "https://github.com/OpenDroneMap/ODM/releases/download/v2.9.0/u2net.zip", "v2.9.0")
if model is not None:
bg = BgFilter(model=model)
def parallel_bg_filter(item):
try:
mask_file = bg.run_img(item['file'], images_dir)
# Check and set
if mask_file is not None and os.path.isfile(mask_file):
item['p'].set_mask(os.path.basename(mask_file))
log.ODM_INFO("Wrote %s" % os.path.basename(mask_file))
else:
log.ODM_WARNING("Cannot generate mask for %s" % img)
except Exception as e:
log.ODM_WARNING("Cannot generate mask for %s: %s" % (img, str(e)))
parallel_map(parallel_bg_filter, bg_images, max_workers=args.max_concurrency)
log.ODM_INFO("Background masks generation completed!")
else:
log.ODM_WARNING("Cannot load AI model (you might need to be connected to the internet?)")
else:
log.ODM_INFO("No background masks will be generated (masks already provided)")
# End bg removal
# Save image database for faster restart
save_images_database(photos, images_database_file)
else:
raise system.ExitException('Not enough supported images in %s' % images_dir)
else:
# We have an images database, just load it
photos = load_images_database(images_database_file)
log.ODM_INFO('Found %s usable images' % len(photos))
log.logger.log_json_images(len(photos))
# Create reconstruction object
reconstruction = types.ODM_Reconstruction(photos)
if tree.odm_georeferencing_gcp and not args.use_exif:
reconstruction.georeference_with_gcp(tree.odm_georeferencing_gcp,
tree.odm_georeferencing_coords,
tree.odm_georeferencing_gcp_utm,
tree.odm_georeferencing_model_txt_geo,
rerun=self.rerun())
else:
reconstruction.georeference_with_gps(tree.dataset_raw,
tree.odm_georeferencing_coords,
tree.odm_georeferencing_model_txt_geo,
rerun=self.rerun())
reconstruction.save_proj_srs(os.path.join(tree.odm_georeferencing, tree.odm_georeferencing_proj))
outputs['reconstruction'] = reconstruction
# Try to load boundaries
if args.boundary:
if reconstruction.is_georeferenced():
outputs['boundary'] = boundary.load_boundary(args.boundary, reconstruction.get_proj_srs())
else:
args.boundary = None
log.ODM_WARNING("Reconstruction is not georeferenced, but boundary file provided (will ignore boundary file)")
# If sfm-algorithm is triangulation, check if photos have OPK
if args.sfm_algorithm == 'triangulation':
for p in photos:
if not p.has_opk():
log.ODM_WARNING("No omega/phi/kappa angles found in input photos (%s), switching sfm-algorithm to incremental" % p.filename)
args.sfm_algorithm = 'incremental'
break
# Rolling shutter cannot be done in non-georeferenced datasets
if args.rolling_shutter and not reconstruction.is_georeferenced():
log.ODM_WARNING("Reconstruction is not georeferenced, disabling rolling shutter correction")
args.rolling_shutter = False