OpenDroneMap-ODM/opendm/types.py

378 wiersze
15 KiB
Python

import cv2
import re
import os
from opendm import get_image_size
from opendm import location
from opendm.gcp import GCPFile
from pyproj import CRS
import xmltodict as x2d
from six import string_types
from opendm import log
from opendm import io
from opendm import system
from opendm import context
from opendm.progress import progressbc
from opendm.photo import ODM_Photo
class ODM_Reconstruction(object):
def __init__(self, photos):
self.photos = photos
self.georef = None
self.gcp = None
self.geo_file = None
self.multi_camera = self.detect_multi_camera()
def detect_multi_camera(self):
"""
Looks at the reconstruction photos and determines if this
is a single or multi-camera setup.
"""
band_photos = {}
band_indexes = {}
for p in self.photos:
if not p.band_name in band_photos:
band_photos[p.band_name] = []
if not p.band_name in band_indexes:
band_indexes[p.band_name] = p.band_index
band_photos[p.band_name].append(p)
bands_count = len(band_photos)
if bands_count >= 2 and bands_count <= 8:
# Validate that all bands have the same number of images,
# otherwise this is not a multi-camera setup
img_per_band = len(band_photos[p.band_name])
for band in band_photos:
if len(band_photos[band]) != img_per_band:
log.ODM_ERROR("Multi-camera setup detected, but band \"%s\" (identified from \"%s\") has only %s images (instead of %s), perhaps images are missing or are corrupted. Please include all necessary files to process all bands and try again." % (band, band_photos[band][0].filename, len(band_photos[band]), img_per_band))
raise RuntimeError("Invalid multi-camera images")
mc = []
for band_name in band_indexes:
mc.append({'name': band_name, 'photos': band_photos[band_name]})
# Sort by band index
mc.sort(key=lambda x: band_indexes[x['name']])
return mc
return None
def is_georeferenced(self):
return self.georef is not None
def has_gcp(self):
return self.is_georeferenced() and self.gcp is not None
def georeference_with_gcp(self, gcp_file, output_coords_file, output_gcp_file, rerun=False):
if not io.file_exists(output_coords_file) or not io.file_exists(output_gcp_file) or rerun:
gcp = GCPFile(gcp_file)
if gcp.exists():
# Create coords file, we'll be using this later
# during georeferencing
with open(output_coords_file, 'w') as f:
coords_header = gcp.wgs84_utm_zone()
f.write(coords_header + "\n")
log.ODM_INFO("Generated coords file from GCP: %s" % coords_header)
# Convert GCP file to a UTM projection since the rest of the pipeline
# does not handle other SRS well.
rejected_entries = []
utm_gcp = GCPFile(gcp.create_utm_copy(output_gcp_file, filenames=[p.filename for p in self.photos], rejected_entries=rejected_entries, include_extras=False))
if not utm_gcp.exists():
raise RuntimeError("Could not project GCP file to UTM. Please double check your GCP file for mistakes.")
for re in rejected_entries:
log.ODM_WARNING("GCP line ignored (image not found): %s" % str(re))
if utm_gcp.entries_count() > 0:
log.ODM_INFO("%s GCP points will be used for georeferencing" % utm_gcp.entries_count())
else:
raise RuntimeError("A GCP file was provided, but no valid GCP entries could be used. Note that the GCP file is case sensitive (\".JPG\" is not the same as \".jpg\").")
self.gcp = utm_gcp
else:
log.ODM_WARNING("GCP file does not exist: %s" % gcp_file)
return
else:
log.ODM_INFO("Coordinates file already exist: %s" % output_coords_file)
log.ODM_INFO("GCP file already exist: %s" % output_gcp_file)
self.gcp = GCPFile(output_gcp_file)
self.georef = ODM_GeoRef.FromCoordsFile(output_coords_file)
return self.georef
def georeference_with_gps(self, images_path, output_coords_file, rerun=False):
try:
if not io.file_exists(output_coords_file) or rerun:
location.extract_utm_coords(self.photos, images_path, output_coords_file)
else:
log.ODM_INFO("Coordinates file already exist: %s" % output_coords_file)
self.georef = ODM_GeoRef.FromCoordsFile(output_coords_file)
except:
log.ODM_WARNING('Could not generate coordinates file. The orthophoto will not be georeferenced.')
self.gcp = GCPFile(None)
return self.georef
def save_proj_srs(self, file):
# Save proj to file for future use (unless this
# dataset is not georeferenced)
if self.is_georeferenced():
with open(file, 'w') as f:
f.write(self.get_proj_srs())
def get_proj_srs(self):
if self.is_georeferenced():
return self.georef.proj4()
def get_photo(self, filename):
for p in self.photos:
if p.filename == filename:
return p
class ODM_GeoRef(object):
@staticmethod
def FromProj(projstring):
return ODM_GeoRef(CRS.from_proj4(projstring))
@staticmethod
def FromCoordsFile(coords_file):
# check for coordinate file existence
if not io.file_exists(coords_file):
log.ODM_WARNING('Could not find file %s' % coords_file)
return
srs = None
with open(coords_file) as f:
# extract reference system and utm zone from first line.
# We will assume the following format:
# 'WGS84 UTM 17N' or 'WGS84 UTM 17N \n'
line = f.readline().rstrip()
srs = location.parse_srs_header(line)
return ODM_GeoRef(srs)
def __init__(self, srs):
self.srs = srs
self.utm_east_offset = 0
self.utm_north_offset = 0
self.transform = []
def proj4(self):
return self.srs.to_proj4()
def valid_utm_offsets(self):
return self.utm_east_offset and self.utm_north_offset
def extract_offsets(self, geo_sys_file):
if not io.file_exists(geo_sys_file):
log.ODM_ERROR('Could not find file %s' % geo_sys_file)
return
with open(geo_sys_file) as f:
offsets = f.readlines()[1].split(' ')
self.utm_east_offset = float(offsets[0])
self.utm_north_offset = float(offsets[1])
def parse_transformation_matrix(self, matrix_file):
if not io.file_exists(matrix_file):
log.ODM_ERROR('Could not find file %s' % matrix_file)
return
# Create a nested list for the transformation matrix
with open(matrix_file) as f:
for line in f:
# Handle matrix formats that either
# have leading or trailing brakets or just plain numbers.
line = re.sub(r"[\[\],]", "", line).strip()
self.transform += [[float(i) for i in line.split()]]
self.utm_east_offset = self.transform[0][3]
self.utm_north_offset = self.transform[1][3]
class ODM_Tree(object):
def __init__(self, root_path, gcp_file = None, geo_file = None):
# root path to the project
self.root_path = io.absolute_path_file(root_path)
self.input_images = io.join_paths(self.root_path, 'images')
# modules paths
# here are defined where all modules should be located in
# order to keep track all files al directories during the
# whole reconstruction process.
self.dataset_raw = io.join_paths(self.root_path, 'images')
self.opensfm = io.join_paths(self.root_path, 'opensfm')
self.mve = io.join_paths(self.root_path, 'mve')
self.odm_meshing = io.join_paths(self.root_path, 'odm_meshing')
self.odm_texturing = io.join_paths(self.root_path, 'odm_texturing')
self.odm_25dtexturing = io.join_paths(self.root_path, 'odm_texturing_25d')
self.odm_georeferencing = io.join_paths(self.root_path, 'odm_georeferencing')
self.odm_25dgeoreferencing = io.join_paths(self.root_path, 'odm_georeferencing_25d')
self.odm_filterpoints = io.join_paths(self.root_path, 'odm_filterpoints')
self.odm_orthophoto = io.join_paths(self.root_path, 'odm_orthophoto')
self.odm_report = io.join_paths(self.root_path, 'odm_report')
# important files paths
# benchmarking
self.benchmarking = io.join_paths(self.root_path, 'benchmark.txt')
self.dataset_list = io.join_paths(self.root_path, 'img_list.txt')
# opensfm
self.opensfm_tracks = io.join_paths(self.opensfm, 'tracks.csv')
self.opensfm_bundle = io.join_paths(self.opensfm, 'bundle_r000.out')
self.opensfm_bundle_list = io.join_paths(self.opensfm, 'list_r000.out')
self.opensfm_image_list = io.join_paths(self.opensfm, 'image_list.txt')
self.opensfm_reconstruction = io.join_paths(self.opensfm, 'reconstruction.json')
self.opensfm_reconstruction_nvm = io.join_paths(self.opensfm, 'undistorted/reconstruction.nvm')
self.opensfm_model = io.join_paths(self.opensfm, 'undistorted/depthmaps/merged.ply')
self.opensfm_transformation = io.join_paths(self.opensfm, 'geocoords_transformation.txt')
# mve
self.mve_model = io.join_paths(self.mve, 'mve_dense_point_cloud.ply')
self.mve_views = io.join_paths(self.mve, 'views')
# filter points
self.filtered_point_cloud = io.join_paths(self.odm_filterpoints, "point_cloud.ply")
# odm_meshing
self.odm_mesh = io.join_paths(self.odm_meshing, 'odm_mesh.ply')
self.odm_meshing_log = io.join_paths(self.odm_meshing, 'odm_meshing_log.txt')
self.odm_25dmesh = io.join_paths(self.odm_meshing, 'odm_25dmesh.ply')
self.odm_25dmeshing_log = io.join_paths(self.odm_meshing, 'odm_25dmeshing_log.txt')
# texturing
self.odm_texturing_undistorted_image_path = io.join_paths(
self.odm_texturing, 'undistorted')
self.odm_textured_model_obj = 'odm_textured_model.obj'
self.odm_textured_model_mtl = 'odm_textured_model.mtl'
# Log is only used by old odm_texturing
self.odm_texuring_log = 'odm_texturing_log.txt'
# odm_georeferencing
self.odm_georeferencing_coords = io.join_paths(
self.odm_georeferencing, 'coords.txt')
self.odm_georeferencing_gcp = gcp_file or io.find('gcp_list.txt', self.root_path)
self.odm_georeferencing_gcp_utm = io.join_paths(self.odm_georeferencing, 'gcp_list_utm.txt')
self.odm_geo_file = geo_file or io.find('geo.txt', self.root_path)
self.odm_georeferencing_utm_log = io.join_paths(
self.odm_georeferencing, 'odm_georeferencing_utm_log.txt')
self.odm_georeferencing_log = 'odm_georeferencing_log.txt'
self.odm_georeferencing_transform_file = 'odm_georeferencing_transform.txt'
self.odm_georeferencing_proj = 'proj.txt'
self.odm_georeferencing_model_txt_geo = 'odm_georeferencing_model_geo.txt'
self.odm_georeferencing_model_obj_geo = 'odm_textured_model_geo.obj'
self.odm_georeferencing_xyz_file = io.join_paths(
self.odm_georeferencing, 'odm_georeferenced_model.csv')
self.odm_georeferencing_las_json = io.join_paths(
self.odm_georeferencing, 'las.json')
self.odm_georeferencing_model_laz = io.join_paths(
self.odm_georeferencing, 'odm_georeferenced_model.laz')
self.odm_georeferencing_model_las = io.join_paths(
self.odm_georeferencing, 'odm_georeferenced_model.las')
self.odm_georeferencing_dem = io.join_paths(
self.odm_georeferencing, 'odm_georeferencing_model_dem.tif')
# odm_orthophoto
self.odm_orthophoto_render = io.join_paths(self.odm_orthophoto, 'odm_orthophoto_render.tif')
self.odm_orthophoto_tif = io.join_paths(self.odm_orthophoto, 'odm_orthophoto.tif')
self.odm_orthophoto_corners = io.join_paths(self.odm_orthophoto, 'odm_orthophoto_corners.txt')
self.odm_orthophoto_log = io.join_paths(self.odm_orthophoto, 'odm_orthophoto_log.txt')
self.odm_orthophoto_tif_log = io.join_paths(self.odm_orthophoto, 'gdal_translate_log.txt')
# Split-merge
self.submodels_path = io.join_paths(self.root_path, 'submodels')
# Tiles
self.entwine_pointcloud = self.path("entwine_pointcloud")
def path(self, *args):
return os.path.join(self.root_path, *args)
class ODM_Stage:
def __init__(self, name, args, progress=0.0, **params):
self.name = name
self.args = args
self.progress = progress
self.params = params
if self.params is None:
self.params = {}
self.next_stage = None
self.prev_stage = None
def connect(self, stage):
self.next_stage = stage
stage.prev_stage = self
return stage
def rerun(self):
"""
Does this stage need to be rerun?
"""
return (self.args.rerun is not None and self.args.rerun == self.name) or \
(self.args.rerun_all) or \
(self.args.rerun_from is not None and self.name in self.args.rerun_from)
def run(self, outputs = {}):
start_time = system.now_raw()
log.ODM_INFO('Running %s stage' % self.name)
self.process(self.args, outputs)
# The tree variable should always be populated at this point
if outputs.get('tree') is None:
raise Exception("Assert violation: tree variable is missing from outputs dictionary.")
if self.args.time:
system.benchmark(start_time, outputs['tree'].benchmarking, self.name)
log.ODM_INFO('Finished %s stage' % self.name)
self.update_progress_end()
# Last stage?
if self.args.end_with == self.name or self.args.rerun == self.name:
log.ODM_INFO("No more stages to run")
return
# Run next stage?
elif self.next_stage is not None:
self.next_stage.run(outputs)
def delta_progress(self):
if self.prev_stage:
return max(0.0, self.progress - self.prev_stage.progress)
else:
return max(0.0, self.progress)
def previous_stages_progress(self):
if self.prev_stage:
return max(0.0, self.prev_stage.progress)
else:
return 0.0
def update_progress_end(self):
self.update_progress(100.0)
def update_progress(self, progress):
progress = max(0.0, min(100.0, progress))
progressbc.send_update(self.previous_stages_progress() +
(self.delta_progress() / 100.0) * float(progress))
def process(self, args, outputs):
raise NotImplementedError