kopia lustrzana https://github.com/OpenDroneMap/ODM
189 wiersze
6.3 KiB
Python
189 wiersze
6.3 KiB
Python
from __future__ import absolute_import
|
|
import os, shutil, sys, struct, random, math
|
|
from opendm.dem import commands
|
|
from opendm import system
|
|
from opendm import log
|
|
from opendm import context
|
|
from scipy import signal
|
|
import numpy as np
|
|
|
|
def create_25dmesh(inPointCloud, outMesh, dsm_radius=0.07, dsm_resolution=0.05, depth=8, samples=1, maxVertexCount=100000, verbose=False, available_cores=None, method='gridded', smooth_dsm=True):
|
|
# Create DSM from point cloud
|
|
|
|
# Create temporary directory
|
|
mesh_directory = os.path.dirname(outMesh)
|
|
tmp_directory = os.path.join(mesh_directory, 'tmp')
|
|
if os.path.exists(tmp_directory):
|
|
shutil.rmtree(tmp_directory)
|
|
os.mkdir(tmp_directory)
|
|
log.ODM_INFO('Created temporary directory: %s' % tmp_directory)
|
|
|
|
radius_steps = [dsm_radius]
|
|
|
|
log.ODM_INFO('Creating DSM for 2.5D mesh')
|
|
|
|
commands.create_dem(
|
|
inPointCloud,
|
|
'mesh_dsm',
|
|
output_type='max',
|
|
radiuses=list(map(str, radius_steps)),
|
|
gapfill=True,
|
|
outdir=tmp_directory,
|
|
resolution=dsm_resolution,
|
|
verbose=verbose,
|
|
max_workers=available_cores,
|
|
apply_smoothing=smooth_dsm
|
|
)
|
|
|
|
if method == 'gridded':
|
|
mesh = dem_to_mesh_gridded(os.path.join(tmp_directory, 'mesh_dsm.tif'), outMesh, maxVertexCount, verbose, maxConcurrency=max(1, available_cores))
|
|
elif method == 'poisson':
|
|
dsm_points = dem_to_points(os.path.join(tmp_directory, 'mesh_dsm.tif'), os.path.join(tmp_directory, 'dsm_points.ply'), verbose)
|
|
mesh = screened_poisson_reconstruction(dsm_points, outMesh, depth=depth,
|
|
samples=samples,
|
|
maxVertexCount=maxVertexCount,
|
|
threads=max(1, available_cores - 1), # poissonrecon can get stuck on some machines if --threads == all cores
|
|
verbose=verbose)
|
|
else:
|
|
raise 'Not a valid method: ' + method
|
|
|
|
# Cleanup tmp
|
|
if os.path.exists(tmp_directory):
|
|
shutil.rmtree(tmp_directory)
|
|
|
|
return mesh
|
|
|
|
|
|
def dem_to_points(inGeotiff, outPointCloud, verbose=False):
|
|
log.ODM_INFO('Sampling points from DSM: %s' % inGeotiff)
|
|
|
|
kwargs = {
|
|
'bin': context.dem2points_path,
|
|
'outfile': outPointCloud,
|
|
'infile': inGeotiff,
|
|
'verbose': '-verbose' if verbose else ''
|
|
}
|
|
|
|
system.run('{bin} -inputFile {infile} '
|
|
'-outputFile {outfile} '
|
|
'-skirtHeightThreshold 1.5 '
|
|
'-skirtIncrements 0.2 '
|
|
'-skirtHeightCap 100 '
|
|
' {verbose} '.format(**kwargs))
|
|
|
|
return outPointCloud
|
|
|
|
|
|
def dem_to_mesh_gridded(inGeotiff, outMesh, maxVertexCount, verbose=False, maxConcurrency=1):
|
|
log.ODM_INFO('Creating mesh from DSM: %s' % inGeotiff)
|
|
|
|
mesh_path, mesh_filename = os.path.split(outMesh)
|
|
# mesh_path = path/to
|
|
# mesh_filename = odm_mesh.ply
|
|
|
|
basename, ext = os.path.splitext(mesh_filename)
|
|
# basename = odm_mesh
|
|
# ext = .ply
|
|
|
|
outMeshDirty = os.path.join(mesh_path, "{}.dirty{}".format(basename, ext))
|
|
|
|
# This should work without issues most of the times,
|
|
# but just in case we lower maxConcurrency if it fails.
|
|
while True:
|
|
try:
|
|
kwargs = {
|
|
'bin': context.dem2mesh_path,
|
|
'outfile': outMeshDirty,
|
|
'infile': inGeotiff,
|
|
'maxVertexCount': maxVertexCount,
|
|
'maxConcurrency': maxConcurrency,
|
|
'verbose': '-verbose' if verbose else ''
|
|
}
|
|
system.run('{bin} -inputFile {infile} '
|
|
'-outputFile {outfile} '
|
|
'-maxTileLength 2000 '
|
|
'-maxVertexCount {maxVertexCount} '
|
|
'-maxConcurrency {maxConcurrency} '
|
|
' {verbose} '.format(**kwargs))
|
|
break
|
|
except Exception as e:
|
|
maxConcurrency = math.floor(maxConcurrency / 2)
|
|
if maxConcurrency >= 1:
|
|
log.ODM_WARNING("dem2mesh failed, retrying with lower concurrency (%s) in case this is a memory issue" % maxConcurrency)
|
|
else:
|
|
raise e
|
|
|
|
|
|
# Cleanup and reduce vertex count if necessary
|
|
# (as dem2mesh cannot guarantee that we'll have the target vertex count)
|
|
cleanupArgs = {
|
|
'bin': context.odm_modules_path,
|
|
'outfile': outMesh,
|
|
'infile': outMeshDirty,
|
|
'max_vertex': maxVertexCount,
|
|
'verbose': '-verbose' if verbose else ''
|
|
}
|
|
|
|
system.run('{bin}/odm_cleanmesh -inputFile {infile} '
|
|
'-outputFile {outfile} '
|
|
'-removeIslands '
|
|
'-decimateMesh {max_vertex} {verbose} '.format(**cleanupArgs))
|
|
|
|
# Delete intermediate results
|
|
os.remove(outMeshDirty)
|
|
|
|
return outMesh
|
|
|
|
|
|
def screened_poisson_reconstruction(inPointCloud, outMesh, depth = 8, samples = 1, maxVertexCount=100000, pointWeight=4, threads=context.num_cores, verbose=False):
|
|
|
|
mesh_path, mesh_filename = os.path.split(outMesh)
|
|
# mesh_path = path/to
|
|
# mesh_filename = odm_mesh.ply
|
|
|
|
basename, ext = os.path.splitext(mesh_filename)
|
|
# basename = odm_mesh
|
|
# ext = .ply
|
|
|
|
outMeshDirty = os.path.join(mesh_path, "{}.dirty{}".format(basename, ext))
|
|
|
|
poissonReconArgs = {
|
|
'bin': context.poisson_recon_path,
|
|
'outfile': outMeshDirty,
|
|
'infile': inPointCloud,
|
|
'depth': depth,
|
|
'samples': samples,
|
|
'pointWeight': pointWeight,
|
|
'threads': threads,
|
|
'verbose': '--verbose' if verbose else ''
|
|
}
|
|
|
|
# Run PoissonRecon
|
|
system.run('{bin} --in {infile} '
|
|
'--out {outfile} '
|
|
'--depth {depth} '
|
|
'--pointWeight {pointWeight} '
|
|
'--samplesPerNode {samples} '
|
|
'--threads {threads} '
|
|
'--linearFit '
|
|
'{verbose}'.format(**poissonReconArgs))
|
|
|
|
# Cleanup and reduce vertex count if necessary
|
|
cleanupArgs = {
|
|
'bin': context.odm_modules_path,
|
|
'outfile': outMesh,
|
|
'infile': outMeshDirty,
|
|
'max_vertex': maxVertexCount,
|
|
'verbose': '-verbose' if verbose else ''
|
|
}
|
|
|
|
system.run('{bin}/odm_cleanmesh -inputFile {infile} '
|
|
'-outputFile {outfile} '
|
|
'-removeIslands '
|
|
'-decimateMesh {max_vertex} {verbose} '.format(**cleanupArgs))
|
|
|
|
# Delete intermediate results
|
|
os.remove(outMeshDirty)
|
|
|
|
return outMesh
|