kopia lustrzana https://github.com/OpenDroneMap/ODM
				
				
				
			
		
			
				
	
	
		
			430 wiersze
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
			
		
		
	
	
			430 wiersze
		
	
	
		
			18 KiB
		
	
	
	
		
			Python
		
	
	
import os
 | 
						|
import shutil
 | 
						|
import warnings
 | 
						|
import numpy as np
 | 
						|
from opendm import get_image_size
 | 
						|
from opendm import location
 | 
						|
from opendm.gcp import GCPFile
 | 
						|
from pyproj import CRS
 | 
						|
import xmltodict as x2d
 | 
						|
from six import string_types
 | 
						|
 | 
						|
from opendm import log
 | 
						|
from opendm import io
 | 
						|
from opendm import system
 | 
						|
from opendm import context
 | 
						|
 | 
						|
from opendm.progress import progressbc
 | 
						|
from opendm.photo import ODM_Photo
 | 
						|
 | 
						|
# Ignore warnings about proj information being lost
 | 
						|
warnings.filterwarnings("ignore")
 | 
						|
 | 
						|
class ODM_Reconstruction(object):
 | 
						|
    def __init__(self, photos):
 | 
						|
        self.photos = photos
 | 
						|
        self.georef = None
 | 
						|
        self.gcp = None
 | 
						|
        self.multi_camera = self.detect_multi_camera()
 | 
						|
        self.filter_photos()
 | 
						|
 | 
						|
    def detect_multi_camera(self):
 | 
						|
        """
 | 
						|
        Looks at the reconstruction photos and determines if this
 | 
						|
        is a single or multi-camera setup.
 | 
						|
        """
 | 
						|
        band_photos = {}
 | 
						|
        band_indexes = {}
 | 
						|
 | 
						|
        for p in self.photos:
 | 
						|
            if not p.band_name in band_photos:
 | 
						|
                band_photos[p.band_name] = []
 | 
						|
            if not p.band_name in band_indexes:
 | 
						|
                band_indexes[p.band_name] = str(p.band_index)
 | 
						|
 | 
						|
            band_photos[p.band_name].append(p)
 | 
						|
            
 | 
						|
        bands_count = len(band_photos)
 | 
						|
        if bands_count >= 2 and bands_count <= 8:
 | 
						|
            # Validate that all bands have the same number of images,
 | 
						|
            # otherwise this is not a multi-camera setup
 | 
						|
            img_per_band = len(band_photos[p.band_name])
 | 
						|
            for band in band_photos:
 | 
						|
                if len(band_photos[band]) != img_per_band:
 | 
						|
                    log.ODM_ERROR("Multi-camera setup detected, but band \"%s\" (identified from \"%s\") has only %s images (instead of %s), perhaps images are missing or are corrupted. Please include all necessary files to process all bands and try again." % (band, band_photos[band][0].filename, len(band_photos[band]), img_per_band))
 | 
						|
                    raise RuntimeError("Invalid multi-camera images")
 | 
						|
            
 | 
						|
            mc = []
 | 
						|
            for band_name in band_indexes:
 | 
						|
                mc.append({'name': band_name, 'photos': band_photos[band_name]})
 | 
						|
            
 | 
						|
            # Sort by band index
 | 
						|
            mc.sort(key=lambda x: band_indexes[x['name']])
 | 
						|
 | 
						|
            return mc
 | 
						|
 | 
						|
        return None
 | 
						|
 | 
						|
    def filter_photos(self):
 | 
						|
        if not self.multi_camera:
 | 
						|
            return # Nothing to do, use all images
 | 
						|
        
 | 
						|
        else:
 | 
						|
            # Sometimes people might try process both RGB + Blue/Red/Green bands
 | 
						|
            # because these are the contents of the SD card from a drone (e.g. DJI P4 Multispectral)
 | 
						|
            # But we don't want to process both, so we discard the RGB files in favor
 | 
						|
            bands = {}
 | 
						|
            for b in self.multi_camera:
 | 
						|
                bands[b['name'].lower()] = b['name']
 | 
						|
            
 | 
						|
            bands_to_remove = []
 | 
						|
 | 
						|
            if 'rgb' in bands or 'redgreenblue' in bands:
 | 
						|
                if 'red' in bands and 'green' in bands and 'blue' in bands:
 | 
						|
                    bands_to_remove.append(bands['rgb'] if 'rgb' in bands else bands['redgreenblue'])
 | 
						|
                else:
 | 
						|
                    for b in ['red', 'green', 'blue']:
 | 
						|
                        if b in bands:
 | 
						|
                            bands_to_remove.append(bands[b])
 | 
						|
 | 
						|
            if len(bands_to_remove) > 0:
 | 
						|
                log.ODM_WARNING("Redundant bands detected, probably because RGB images are mixed with single band images. We will trim some bands as needed")
 | 
						|
 | 
						|
                for band_to_remove in bands_to_remove:
 | 
						|
                    self.multi_camera = [b for b in self.multi_camera if b['name'] != band_to_remove]
 | 
						|
                    photos_before = len(self.photos)
 | 
						|
                    self.photos = [p for p in self.photos if p.band_name != band_to_remove]
 | 
						|
                    photos_after = len(self.photos)
 | 
						|
 | 
						|
                    log.ODM_WARNING("Skipping %s band (%s images)" % (band_to_remove, photos_before - photos_after))
 | 
						|
 | 
						|
    def is_georeferenced(self):
 | 
						|
        return self.georef is not None
 | 
						|
 | 
						|
    def has_gcp(self):
 | 
						|
        return self.is_georeferenced() and self.gcp is not None and self.gcp.exists()
 | 
						|
    
 | 
						|
    def has_geotagged_photos(self):
 | 
						|
        for photo in self.photos:
 | 
						|
            if photo.latitude is None and photo.longitude is None:
 | 
						|
                return False
 | 
						|
 | 
						|
        return True 
 | 
						|
 | 
						|
    def georeference_with_gcp(self, gcp_file, output_coords_file, output_gcp_file, output_model_txt_geo, rerun=False):
 | 
						|
        if not io.file_exists(output_coords_file) or not io.file_exists(output_gcp_file) or rerun:
 | 
						|
            gcp = GCPFile(gcp_file)
 | 
						|
            if gcp.exists():
 | 
						|
                if gcp.entries_count() == 0:
 | 
						|
                    raise RuntimeError("This GCP file does not have any entries. Are the entries entered in the proper format?")
 | 
						|
                
 | 
						|
                gcp.check_entries()
 | 
						|
 | 
						|
                # Convert GCP file to a UTM projection since the rest of the pipeline
 | 
						|
                # does not handle other SRS well.
 | 
						|
                rejected_entries = []
 | 
						|
                utm_gcp = GCPFile(gcp.create_utm_copy(output_gcp_file, filenames=[p.filename for p in self.photos], rejected_entries=rejected_entries, include_extras=True))
 | 
						|
                
 | 
						|
                if not utm_gcp.exists():
 | 
						|
                    raise RuntimeError("Could not project GCP file to UTM. Please double check your GCP file for mistakes.")
 | 
						|
                
 | 
						|
                for re in rejected_entries:
 | 
						|
                    log.ODM_WARNING("GCP line ignored (image not found): %s" % str(re))
 | 
						|
                
 | 
						|
                if utm_gcp.entries_count() > 0:
 | 
						|
                    log.ODM_INFO("%s GCP points will be used for georeferencing" % utm_gcp.entries_count())
 | 
						|
                else:
 | 
						|
                    raise RuntimeError("A GCP file was provided, but no valid GCP entries could be used. Note that the GCP file is case sensitive (\".JPG\" is not the same as \".jpg\").")
 | 
						|
                
 | 
						|
                self.gcp = utm_gcp
 | 
						|
 | 
						|
                # Compute RTC offsets from GCP points
 | 
						|
                x_pos = [p.x for p in utm_gcp.iter_entries()]
 | 
						|
                y_pos = [p.y for p in utm_gcp.iter_entries()]
 | 
						|
                x_off, y_off = int(np.round(np.mean(x_pos))), int(np.round(np.mean(y_pos)))
 | 
						|
 | 
						|
                # Create coords file, we'll be using this later
 | 
						|
                # during georeferencing
 | 
						|
                with open(output_coords_file, 'w') as f:
 | 
						|
                    coords_header = gcp.wgs84_utm_zone()
 | 
						|
                    f.write(coords_header + "\n")
 | 
						|
                    f.write("{} {}\n".format(x_off, y_off))
 | 
						|
                    log.ODM_INFO("Generated coords file from GCP: %s" % coords_header)
 | 
						|
                
 | 
						|
                # Deprecated: This is mostly for backward compatibility and should be
 | 
						|
                # be removed at some point
 | 
						|
                shutil.copyfile(output_coords_file, output_model_txt_geo)
 | 
						|
                log.ODM_INFO("Wrote %s" % output_model_txt_geo)
 | 
						|
            else:
 | 
						|
                log.ODM_WARNING("GCP file does not exist: %s" % gcp_file)
 | 
						|
                return
 | 
						|
        else:
 | 
						|
            log.ODM_INFO("Coordinates file already exist: %s" % output_coords_file)
 | 
						|
            log.ODM_INFO("GCP file already exist: %s" % output_gcp_file)
 | 
						|
            self.gcp = GCPFile(output_gcp_file)
 | 
						|
        
 | 
						|
        self.georef = ODM_GeoRef.FromCoordsFile(output_coords_file)
 | 
						|
        return self.georef
 | 
						|
 | 
						|
    def georeference_with_gps(self, images_path, output_coords_file, output_model_txt_geo, rerun=False):
 | 
						|
        try:
 | 
						|
            if not io.file_exists(output_coords_file) or rerun:
 | 
						|
                location.extract_utm_coords(self.photos, images_path, output_coords_file)
 | 
						|
            else:
 | 
						|
                log.ODM_INFO("Coordinates file already exist: %s" % output_coords_file)
 | 
						|
            
 | 
						|
            # Deprecated: This is mostly for backward compatibility and should be
 | 
						|
            # be removed at some point
 | 
						|
            if not io.file_exists(output_model_txt_geo) or rerun:
 | 
						|
                with open(output_coords_file, 'r') as f:
 | 
						|
                    with open(output_model_txt_geo, 'w+') as w:
 | 
						|
                        w.write(f.readline()) # CRS
 | 
						|
                        w.write(f.readline()) # Offset
 | 
						|
            else:
 | 
						|
                log.ODM_INFO("Model geo file already exist: %s" % output_model_txt_geo)
 | 
						|
            
 | 
						|
            self.georef = ODM_GeoRef.FromCoordsFile(output_coords_file)
 | 
						|
        except:
 | 
						|
            log.ODM_WARNING('Could not generate coordinates file. The orthophoto will not be georeferenced.')
 | 
						|
 | 
						|
        self.gcp = GCPFile(None)
 | 
						|
        return self.georef
 | 
						|
 | 
						|
    def save_proj_srs(self, file):
 | 
						|
        # Save proj to file for future use (unless this 
 | 
						|
        # dataset is not georeferenced)
 | 
						|
        if self.is_georeferenced():
 | 
						|
            with open(file, 'w') as f:
 | 
						|
                f.write(self.get_proj_srs())
 | 
						|
 | 
						|
    def get_proj_srs(self):
 | 
						|
        if self.is_georeferenced():
 | 
						|
            return self.georef.proj4()
 | 
						|
    
 | 
						|
    def get_proj_offset(self):
 | 
						|
        if self.is_georeferenced():
 | 
						|
            return (self.georef.utm_east_offset, self.georef.utm_north_offset)
 | 
						|
        else:
 | 
						|
            return (None, None)
 | 
						|
 | 
						|
    def get_photo(self, filename):
 | 
						|
        for p in self.photos:
 | 
						|
            if p.filename == filename:
 | 
						|
                return p
 | 
						|
    
 | 
						|
 | 
						|
class ODM_GeoRef(object):
 | 
						|
    @staticmethod
 | 
						|
    def FromCoordsFile(coords_file):
 | 
						|
        # check for coordinate file existence
 | 
						|
        if not io.file_exists(coords_file):
 | 
						|
            log.ODM_WARNING('Could not find file %s' % coords_file)
 | 
						|
            return
 | 
						|
 | 
						|
        srs = None
 | 
						|
        utm_east_offset = None
 | 
						|
        utm_north_offset = None
 | 
						|
 | 
						|
        with open(coords_file) as f:
 | 
						|
            # extract reference system and utm zone from first line.
 | 
						|
            # We will assume the following format:
 | 
						|
            # 'WGS84 UTM 17N' or 'WGS84 UTM 17N \n'
 | 
						|
            line = f.readline().rstrip()
 | 
						|
            srs = location.parse_srs_header(line)
 | 
						|
 | 
						|
            # second line is a northing/easting offset
 | 
						|
            line = f.readline().rstrip()
 | 
						|
            utm_east_offset, utm_north_offset = map(float, line.split(" "))
 | 
						|
 | 
						|
        return ODM_GeoRef(srs, utm_east_offset, utm_north_offset)
 | 
						|
 | 
						|
    def __init__(self, srs, utm_east_offset, utm_north_offset):
 | 
						|
        self.srs = srs
 | 
						|
        self.utm_east_offset = utm_east_offset
 | 
						|
        self.utm_north_offset = utm_north_offset
 | 
						|
        self.transform = []
 | 
						|
 | 
						|
    def proj4(self):
 | 
						|
        return self.srs.to_proj4()
 | 
						|
    
 | 
						|
    def utm_offset(self):
 | 
						|
        return (self.utm_east_offset, self.utm_north_offset)
 | 
						|
    
 | 
						|
class ODM_Tree(object):
 | 
						|
    def __init__(self, root_path, gcp_file = None, geo_file = None, align_file = None):
 | 
						|
        # root path to the project
 | 
						|
        self.root_path = io.absolute_path_file(root_path)
 | 
						|
        self.input_images = os.path.join(self.root_path, 'images')
 | 
						|
 | 
						|
        # modules paths
 | 
						|
 | 
						|
        # here are defined where all modules should be located in
 | 
						|
        # order to keep track all files al directories during the
 | 
						|
        # whole reconstruction process.
 | 
						|
        self.dataset_raw = os.path.join(self.root_path, 'images')
 | 
						|
        self.opensfm = os.path.join(self.root_path, 'opensfm')
 | 
						|
        self.openmvs = os.path.join(self.opensfm, 'undistorted', 'openmvs')
 | 
						|
        self.odm_meshing = os.path.join(self.root_path, 'odm_meshing')
 | 
						|
        self.odm_texturing = os.path.join(self.root_path, 'odm_texturing')
 | 
						|
        self.odm_25dtexturing = os.path.join(self.root_path, 'odm_texturing_25d')
 | 
						|
        self.odm_georeferencing = os.path.join(self.root_path, 'odm_georeferencing')
 | 
						|
        self.odm_filterpoints = os.path.join(self.root_path, 'odm_filterpoints')
 | 
						|
        self.odm_orthophoto = os.path.join(self.root_path, 'odm_orthophoto')
 | 
						|
        self.odm_report = os.path.join(self.root_path, 'odm_report')
 | 
						|
 | 
						|
        # important files paths
 | 
						|
 | 
						|
        # benchmarking
 | 
						|
        self.benchmarking = os.path.join(self.root_path, 'benchmark.txt')
 | 
						|
        self.dataset_list = os.path.join(self.root_path, 'img_list.txt')
 | 
						|
 | 
						|
        # opensfm
 | 
						|
        self.opensfm_image_list = os.path.join(self.opensfm, 'image_list.txt')
 | 
						|
        self.opensfm_reconstruction = os.path.join(self.opensfm, 'reconstruction.json')
 | 
						|
        self.opensfm_reconstruction_nvm = os.path.join(self.opensfm, 'undistorted/reconstruction.nvm')
 | 
						|
        self.opensfm_geocoords_reconstruction = os.path.join(self.opensfm, 'reconstruction.geocoords.json')
 | 
						|
        self.opensfm_topocentric_reconstruction = os.path.join(self.opensfm, 'reconstruction.topocentric.json')
 | 
						|
 | 
						|
        # OpenMVS
 | 
						|
        self.openmvs_model = os.path.join(self.openmvs, 'scene_dense_dense_filtered.ply')
 | 
						|
 | 
						|
        # filter points
 | 
						|
        self.filtered_point_cloud = os.path.join(self.odm_filterpoints, "point_cloud.ply")
 | 
						|
        self.filtered_point_cloud_stats = os.path.join(self.odm_filterpoints, "point_cloud_stats.json")
 | 
						|
 | 
						|
        # odm_meshing
 | 
						|
        self.odm_mesh = os.path.join(self.odm_meshing, 'odm_mesh.ply')
 | 
						|
        self.odm_meshing_log = os.path.join(self.odm_meshing, 'odm_meshing_log.txt')
 | 
						|
        self.odm_25dmesh = os.path.join(self.odm_meshing, 'odm_25dmesh.ply')
 | 
						|
        self.odm_25dmeshing_log = os.path.join(self.odm_meshing, 'odm_25dmeshing_log.txt')
 | 
						|
 | 
						|
        # texturing
 | 
						|
        self.odm_textured_model_obj = 'odm_textured_model_geo.obj'
 | 
						|
        self.odm_textured_model_glb = 'odm_textured_model_geo.glb'
 | 
						|
 | 
						|
        # odm_georeferencing
 | 
						|
        self.odm_georeferencing_coords = os.path.join(
 | 
						|
            self.odm_georeferencing, 'coords.txt')
 | 
						|
        self.odm_georeferencing_gcp = gcp_file or io.find('gcp_list.txt', self.root_path)
 | 
						|
        self.odm_georeferencing_gcp_utm = os.path.join(self.odm_georeferencing, 'gcp_list_utm.txt')
 | 
						|
        self.odm_geo_file = geo_file or io.find('geo.txt', self.root_path)
 | 
						|
        self.odm_align_file = align_file or io.find('align.laz', self.root_path) or io.find('align.las', self.root_path) or io.find('align.tif', self.root_path)
 | 
						|
        
 | 
						|
        self.odm_georeferencing_proj = 'proj.txt'
 | 
						|
        self.odm_georeferencing_model_txt_geo = os.path.join(
 | 
						|
            self.odm_georeferencing, 'odm_georeferencing_model_geo.txt')
 | 
						|
        self.odm_georeferencing_xyz_file = os.path.join(
 | 
						|
            self.odm_georeferencing, 'odm_georeferenced_model.csv')
 | 
						|
        self.odm_georeferencing_model_laz = os.path.join(
 | 
						|
            self.odm_georeferencing, 'odm_georeferenced_model.laz')
 | 
						|
        self.odm_georeferencing_model_las = os.path.join(
 | 
						|
            self.odm_georeferencing, 'odm_georeferenced_model.las')
 | 
						|
        self.odm_georeferencing_alignment_matrix = os.path.join(
 | 
						|
            self.odm_georeferencing, 'alignment_matrix.json'
 | 
						|
        )
 | 
						|
 | 
						|
        # odm_orthophoto
 | 
						|
        self.odm_orthophoto_render = os.path.join(self.odm_orthophoto, 'odm_orthophoto_render.tif')
 | 
						|
        self.odm_orthophoto_tif = os.path.join(self.odm_orthophoto, 'odm_orthophoto.tif')
 | 
						|
        self.odm_orthophoto_corners = os.path.join(self.odm_orthophoto, 'odm_orthophoto_corners.txt')
 | 
						|
        self.odm_orthophoto_log = os.path.join(self.odm_orthophoto, 'odm_orthophoto_log.txt')
 | 
						|
        self.odm_orthophoto_tif_log = os.path.join(self.odm_orthophoto, 'gdal_translate_log.txt')
 | 
						|
 | 
						|
        # tiles
 | 
						|
        self.orthophoto_tiles = os.path.join(self.root_path, "orthophoto_tiles")
 | 
						|
 | 
						|
        # Split-merge 
 | 
						|
        self.submodels_path = os.path.join(self.root_path, 'submodels')
 | 
						|
 | 
						|
        # Tiles
 | 
						|
        self.entwine_pointcloud = self.path("entwine_pointcloud")
 | 
						|
        self.ogc_tiles = self.path("3d_tiles")
 | 
						|
 | 
						|
    def path(self, *args):
 | 
						|
        return os.path.join(self.root_path, *args)
 | 
						|
 | 
						|
 | 
						|
class ODM_Stage:
 | 
						|
    def __init__(self, name, args, progress=0.0, **params):
 | 
						|
        self.name = name
 | 
						|
        self.args = args
 | 
						|
        self.progress = progress
 | 
						|
        self.params = params
 | 
						|
        if self.params is None:
 | 
						|
            self.params = {}
 | 
						|
        self.next_stage = None
 | 
						|
        self.prev_stage = None
 | 
						|
 | 
						|
    def connect(self, stage):
 | 
						|
        self.next_stage = stage
 | 
						|
        stage.prev_stage = self
 | 
						|
        return stage
 | 
						|
 | 
						|
    def rerun(self):
 | 
						|
        """
 | 
						|
        Does this stage need to be rerun?
 | 
						|
        """
 | 
						|
        return (self.args.rerun is not None and self.args.rerun == self.name) or \
 | 
						|
                     (self.args.rerun_all) or \
 | 
						|
                     (self.args.rerun_from is not None and self.name in self.args.rerun_from)
 | 
						|
    
 | 
						|
    def run(self, outputs = {}):
 | 
						|
        start_time = system.now_raw()
 | 
						|
        log.logger.log_json_stage_run(self.name, start_time)
 | 
						|
 | 
						|
        log.ODM_INFO('Running %s stage' % self.name)
 | 
						|
        
 | 
						|
        self.process(self.args, outputs)
 | 
						|
 | 
						|
        # The tree variable should always be populated at this point
 | 
						|
        if outputs.get('tree') is None:
 | 
						|
            raise Exception("Assert violation: tree variable is missing from outputs dictionary.")
 | 
						|
 | 
						|
        try:
 | 
						|
            system.benchmark(start_time, outputs['tree'].benchmarking, self.name)
 | 
						|
        except Exception as e:
 | 
						|
            log.ODM_WARNING("Cannot write benchmark file: %s" % str(e))
 | 
						|
 | 
						|
        log.ODM_INFO('Finished %s stage' % self.name)
 | 
						|
        self.update_progress_end()
 | 
						|
 | 
						|
        # Last stage?
 | 
						|
        if self.args.end_with == self.name or self.args.rerun == self.name:
 | 
						|
            log.ODM_INFO("No more stages to run")
 | 
						|
            return
 | 
						|
 | 
						|
        # Run next stage?
 | 
						|
        elif self.next_stage is not None:
 | 
						|
            self.next_stage.run(outputs)
 | 
						|
 | 
						|
    def delta_progress(self):
 | 
						|
        if self.prev_stage:
 | 
						|
            return max(0.0, self.progress - self.prev_stage.progress)
 | 
						|
        else:
 | 
						|
            return max(0.0, self.progress)
 | 
						|
    
 | 
						|
    def previous_stages_progress(self):
 | 
						|
        if self.prev_stage:
 | 
						|
            return max(0.0, self.prev_stage.progress)
 | 
						|
        else:
 | 
						|
            return 0.0
 | 
						|
 | 
						|
    def update_progress_end(self):
 | 
						|
        self.update_progress(100.0)
 | 
						|
 | 
						|
    def update_progress(self, progress):
 | 
						|
        progress = max(0.0, min(100.0, progress))
 | 
						|
        progressbc.send_update(self.previous_stages_progress() + 
 | 
						|
                              (self.delta_progress() / 100.0) * float(progress))
 | 
						|
 | 
						|
    def last_stage(self):
 | 
						|
        if self.next_stage:
 | 
						|
            return self.next_stage.last_stage()
 | 
						|
        else:
 | 
						|
            return self
 | 
						|
        
 | 
						|
 | 
						|
    def process(self, args, outputs):
 | 
						|
        raise NotImplementedError
 | 
						|
 |