kopia lustrzana https://github.com/OpenDroneMap/ODM
801 wiersze
30 KiB
Python
801 wiersze
30 KiB
Python
import logging
|
|
import re
|
|
import os
|
|
import math
|
|
|
|
import exifread
|
|
import numpy as np
|
|
from six import string_types
|
|
from datetime import datetime, timedelta, timezone
|
|
import pytz
|
|
|
|
from opendm import io
|
|
from opendm import log
|
|
from opendm import system
|
|
import xmltodict as x2d
|
|
from opendm import get_image_size
|
|
from xml.parsers.expat import ExpatError
|
|
from opensfm.sensors import sensor_data
|
|
from opensfm.geo import ecef_from_lla
|
|
|
|
projections = ['perspective', 'fisheye', 'brown', 'dual', 'equirectangular', 'spherical']
|
|
|
|
def find_largest_photo_dims(photos):
|
|
max_mp = 0
|
|
max_dims = None
|
|
|
|
for p in photos:
|
|
if p.width is None or p.height is None:
|
|
continue
|
|
mp = p.width * p.height
|
|
if mp > max_mp:
|
|
max_mp = mp
|
|
max_dims = (p.width, p.height)
|
|
|
|
return max_dims
|
|
|
|
def find_largest_photo_dim(photos):
|
|
max_dim = 0
|
|
for p in photos:
|
|
if p.width is None:
|
|
continue
|
|
max_dim = max(max_dim, max(p.width, p.height))
|
|
|
|
return max_dim
|
|
|
|
def find_largest_photo(photos):
|
|
max_p = None
|
|
max_area = 0
|
|
for p in photos:
|
|
if p.width is None:
|
|
continue
|
|
area = p.width * p.height
|
|
|
|
if area > max_area:
|
|
max_area = area
|
|
max_p = p
|
|
|
|
return max_p
|
|
|
|
def get_mm_per_unit(resolution_unit):
|
|
"""Length of a resolution unit in millimeters.
|
|
|
|
Uses the values from the EXIF specs in
|
|
https://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/EXIF.html
|
|
|
|
Args:
|
|
resolution_unit: the resolution unit value given in the EXIF
|
|
"""
|
|
if resolution_unit == 2: # inch
|
|
return 25.4
|
|
elif resolution_unit == 3: # cm
|
|
return 10
|
|
elif resolution_unit == 4: # mm
|
|
return 1
|
|
elif resolution_unit == 5: # um
|
|
return 0.001
|
|
else:
|
|
log.ODM_WARNING("Unknown EXIF resolution unit value: {}".format(resolution_unit))
|
|
return None
|
|
|
|
class PhotoCorruptedException(Exception):
|
|
pass
|
|
|
|
class ODM_Photo:
|
|
"""ODMPhoto - a class for ODMPhotos"""
|
|
|
|
def __init__(self, path_file):
|
|
self.filename = os.path.basename(path_file)
|
|
self.mask = None
|
|
|
|
# Standard tags (virtually all photos have these)
|
|
self.width = None
|
|
self.height = None
|
|
self.camera_make = ''
|
|
self.camera_model = ''
|
|
self.orientation = 1
|
|
|
|
# Geo tags
|
|
self.latitude = None
|
|
self.longitude = None
|
|
self.altitude = None
|
|
|
|
# Multi-band fields
|
|
self.band_name = 'RGB'
|
|
self.band_index = 0
|
|
self.capture_uuid = None # DJI only
|
|
|
|
# Multi-spectral fields
|
|
self.fnumber = None
|
|
self.radiometric_calibration = None
|
|
self.black_level = None
|
|
|
|
# Capture info
|
|
self.exposure_time = None
|
|
self.iso_speed = None
|
|
self.bits_per_sample = None
|
|
self.vignetting_center = None
|
|
self.vignetting_polynomial = None
|
|
self.spectral_irradiance = None
|
|
self.horizontal_irradiance = None
|
|
self.irradiance_scale_to_si = None
|
|
self.utc_time = None
|
|
|
|
# OPK angles
|
|
self.yaw = None
|
|
self.pitch = None
|
|
self.roll = None
|
|
self.omega = None
|
|
self.phi = None
|
|
self.kappa = None
|
|
|
|
# DLS
|
|
self.sun_sensor = None
|
|
self.dls_yaw = None
|
|
self.dls_pitch = None
|
|
self.dls_roll = None
|
|
|
|
# self.center_wavelength = None
|
|
# self.bandwidth = None
|
|
|
|
# RTK
|
|
self.gps_xy_stddev = None # Dilution of Precision X/Y
|
|
self.gps_z_stddev = None # Dilution of Precision Z
|
|
|
|
# Misc SFM
|
|
self.camera_projection = 'brown'
|
|
self.focal_ratio = 0.85
|
|
|
|
# parse values from metadata
|
|
self.parse_exif_values(path_file)
|
|
|
|
# print log message
|
|
log.ODM_DEBUG('Loaded {}'.format(self))
|
|
|
|
|
|
def __str__(self):
|
|
return '{} | camera: {} {} | dimensions: {} x {} | lat: {} | lon: {} | alt: {} | band: {} ({})'.format(
|
|
self.filename, self.camera_make, self.camera_model, self.width, self.height,
|
|
self.latitude, self.longitude, self.altitude, self.band_name, self.band_index)
|
|
|
|
def set_mask(self, mask):
|
|
self.mask = mask
|
|
|
|
def update_with_geo_entry(self, geo_entry):
|
|
self.latitude = geo_entry.y
|
|
self.longitude = geo_entry.x
|
|
self.altitude = geo_entry.z
|
|
self.omega = geo_entry.omega
|
|
self.phi = geo_entry.phi
|
|
self.kappa = geo_entry.kappa
|
|
self.dls_yaw = geo_entry.omega
|
|
self.dls_pitch = geo_entry.phi
|
|
self.dls_roll = geo_entry.kappa
|
|
self.gps_xy_stddev = geo_entry.horizontal_accuracy
|
|
self.gps_z_stddev = geo_entry.vertical_accuracy
|
|
|
|
def parse_exif_values(self, _path_file):
|
|
# Disable exifread log
|
|
logging.getLogger('exifread').setLevel(logging.CRITICAL)
|
|
|
|
try:
|
|
self.width, self.height = get_image_size.get_image_size(_path_file)
|
|
except Exception as e:
|
|
raise PhotoCorruptedException(str(e))
|
|
|
|
tags = {}
|
|
xtags = {}
|
|
|
|
with open(_path_file, 'rb') as f:
|
|
tags = exifread.process_file(f, details=False)
|
|
try:
|
|
if 'Image Make' in tags:
|
|
try:
|
|
self.camera_make = tags['Image Make'].values
|
|
self.camera_make = self.camera_make.strip()
|
|
except UnicodeDecodeError:
|
|
log.ODM_WARNING("EXIF Image Make might be corrupted")
|
|
self.camera_make = "unknown"
|
|
if 'Image Model' in tags:
|
|
try:
|
|
self.camera_model = tags['Image Model'].values
|
|
self.camera_model = self.camera_model.strip()
|
|
except UnicodeDecodeError:
|
|
log.ODM_WARNING("EXIF Image Model might be corrupted")
|
|
self.camera_model = "unknown"
|
|
if 'GPS GPSAltitude' in tags:
|
|
self.altitude = self.float_value(tags['GPS GPSAltitude'])
|
|
if 'GPS GPSAltitudeRef' in tags and self.int_value(tags['GPS GPSAltitudeRef']) > 0:
|
|
self.altitude *= -1
|
|
if 'GPS GPSLatitude' in tags and 'GPS GPSLatitudeRef' in tags:
|
|
self.latitude = self.dms_to_decimal(tags['GPS GPSLatitude'], tags['GPS GPSLatitudeRef'])
|
|
if 'GPS GPSLongitude' in tags and 'GPS GPSLongitudeRef' in tags:
|
|
self.longitude = self.dms_to_decimal(tags['GPS GPSLongitude'], tags['GPS GPSLongitudeRef'])
|
|
if 'Image Orientation' in tags:
|
|
self.orientation = self.int_value(tags['Image Orientation'])
|
|
except (IndexError, ValueError) as e:
|
|
log.ODM_WARNING("Cannot read basic EXIF tags for %s: %s" % (self.filename, str(e)))
|
|
|
|
try:
|
|
if 'Image Tag 0xC61A' in tags:
|
|
self.black_level = self.list_values(tags['Image Tag 0xC61A'])
|
|
elif 'BlackLevel' in tags:
|
|
self.black_level = self.list_values(tags['BlackLevel'])
|
|
|
|
if 'EXIF ExposureTime' in tags:
|
|
self.exposure_time = self.float_value(tags['EXIF ExposureTime'])
|
|
|
|
if 'EXIF FNumber' in tags:
|
|
self.fnumber = self.float_value(tags['EXIF FNumber'])
|
|
|
|
if 'EXIF ISOSpeed' in tags:
|
|
self.iso_speed = self.int_value(tags['EXIF ISOSpeed'])
|
|
elif 'EXIF PhotographicSensitivity' in tags:
|
|
self.iso_speed = self.int_value(tags['EXIF PhotographicSensitivity'])
|
|
elif 'EXIF ISOSpeedRatings' in tags:
|
|
self.iso_speed = self.int_value(tags['EXIF ISOSpeedRatings'])
|
|
|
|
|
|
if 'Image BitsPerSample' in tags:
|
|
self.bits_per_sample = self.int_value(tags['Image BitsPerSample'])
|
|
if 'EXIF DateTimeOriginal' in tags:
|
|
str_time = tags['EXIF DateTimeOriginal'].values
|
|
utc_time = datetime.strptime(str_time, "%Y:%m:%d %H:%M:%S")
|
|
subsec = 0
|
|
if 'EXIF SubSecTime' in tags:
|
|
subsec = self.int_value(tags['EXIF SubSecTime'])
|
|
negative = 1.0
|
|
if subsec < 0:
|
|
negative = -1.0
|
|
subsec *= -1.0
|
|
subsec = float('0.{}'.format(int(subsec)))
|
|
subsec *= negative
|
|
ms = subsec * 1e3
|
|
utc_time += timedelta(milliseconds = ms)
|
|
timezone = pytz.timezone('UTC')
|
|
epoch = timezone.localize(datetime.utcfromtimestamp(0))
|
|
self.utc_time = (timezone.localize(utc_time) - epoch).total_seconds() * 1000.0
|
|
except Exception as e:
|
|
log.ODM_WARNING("Cannot read extended EXIF tags for %s: %s" % (self.filename, str(e)))
|
|
|
|
# Warn if GPS coordinates are suspiciously wrong
|
|
if self.latitude is not None and self.latitude == 0 and \
|
|
self.longitude is not None and self.longitude == 0:
|
|
log.ODM_WARNING("%s has GPS position (0,0), possibly corrupted" % self.filename)
|
|
|
|
|
|
# Extract XMP tags
|
|
f.seek(0)
|
|
xmp = self.get_xmp(f)
|
|
|
|
for xtags in xmp:
|
|
try:
|
|
band_name = self.get_xmp_tag(xtags, ['Camera:BandName', '@Camera:BandName'])
|
|
if band_name is not None:
|
|
self.band_name = band_name.replace(" ", "")
|
|
|
|
self.set_attr_from_xmp_tag('band_index', xtags, [
|
|
'DLS:SensorId', # Micasense RedEdge
|
|
'@Camera:RigCameraIndex', # Parrot Sequoia, Sentera 21244-00_3.2MP-GS-0001
|
|
'Camera:RigCameraIndex', # MicaSense Altum
|
|
])
|
|
|
|
self.set_attr_from_xmp_tag('radiometric_calibration', xtags, [
|
|
'MicaSense:RadiometricCalibration',
|
|
])
|
|
|
|
self.set_attr_from_xmp_tag('vignetting_center', xtags, [
|
|
'Camera:VignettingCenter',
|
|
'Sentera:VignettingCenter',
|
|
])
|
|
|
|
self.set_attr_from_xmp_tag('vignetting_polynomial', xtags, [
|
|
'Camera:VignettingPolynomial',
|
|
'Sentera:VignettingPolynomial',
|
|
])
|
|
|
|
self.set_attr_from_xmp_tag('horizontal_irradiance', xtags, [
|
|
'Camera:HorizontalIrradiance'
|
|
], float)
|
|
|
|
self.set_attr_from_xmp_tag('irradiance_scale_to_si', xtags, [
|
|
'Camera:IrradianceScaleToSIUnits'
|
|
], float)
|
|
|
|
self.set_attr_from_xmp_tag('sun_sensor', xtags, [
|
|
'Camera:SunSensor',
|
|
], float)
|
|
|
|
self.set_attr_from_xmp_tag('spectral_irradiance', xtags, [
|
|
'Camera:SpectralIrradiance',
|
|
'Camera:Irradiance',
|
|
], float)
|
|
|
|
self.set_attr_from_xmp_tag('capture_uuid', xtags, [
|
|
'@drone-dji:CaptureUUID', # DJI
|
|
'@Camera:ImageUniqueID', # sentera 6x
|
|
])
|
|
|
|
# Camera make / model for some cameras is stored in the XMP
|
|
if self.camera_make == '':
|
|
self.set_attr_from_xmp_tag('camera_make', xtags, [
|
|
'@tiff:Make'
|
|
])
|
|
if self.camera_model == '':
|
|
self.set_attr_from_xmp_tag('camera_model', xtags, [
|
|
'@tiff:Model'
|
|
])
|
|
|
|
# DJI GPS tags
|
|
self.set_attr_from_xmp_tag('longitude', xtags, [
|
|
'@drone-dji:Longitude'
|
|
], float)
|
|
self.set_attr_from_xmp_tag('latitude', xtags, [
|
|
'@drone-dji:Latitude'
|
|
], float)
|
|
self.set_attr_from_xmp_tag('altitude', xtags, [
|
|
'@drone-dji:AbsoluteAltitude'
|
|
], float)
|
|
|
|
# Phantom 4 RTK
|
|
if '@drone-dji:RtkStdLon' in xtags:
|
|
y = float(self.get_xmp_tag(xtags, '@drone-dji:RtkStdLon'))
|
|
x = float(self.get_xmp_tag(xtags, '@drone-dji:RtkStdLat'))
|
|
self.gps_xy_stddev = max(x, y)
|
|
|
|
if '@drone-dji:RtkStdHgt' in xtags:
|
|
self.gps_z_stddev = float(self.get_xmp_tag(xtags, '@drone-dji:RtkStdHgt'))
|
|
else:
|
|
self.set_attr_from_xmp_tag('gps_xy_stddev', xtags, [
|
|
'@Camera:GPSXYAccuracy',
|
|
'GPSXYAccuracy'
|
|
], float)
|
|
self.set_attr_from_xmp_tag('gps_z_stddev', xtags, [
|
|
'@Camera:GPSZAccuracy',
|
|
'GPSZAccuracy'
|
|
], float)
|
|
|
|
# Account for over-estimation
|
|
if self.gps_xy_stddev is not None:
|
|
self.gps_xy_stddev *= 2.0
|
|
if self.gps_z_stddev is not None:
|
|
self.gps_z_stddev *= 2.0
|
|
|
|
if 'DLS:Yaw' in xtags:
|
|
self.set_attr_from_xmp_tag('dls_yaw', xtags, ['DLS:Yaw'], float)
|
|
self.set_attr_from_xmp_tag('dls_pitch', xtags, ['DLS:Pitch'], float)
|
|
self.set_attr_from_xmp_tag('dls_roll', xtags, ['DLS:Roll'], float)
|
|
|
|
camera_projection = self.get_xmp_tag(xtags, ['@Camera:ModelType', 'Camera:ModelType'])
|
|
if camera_projection is not None:
|
|
camera_projection = camera_projection.lower()
|
|
if camera_projection in projections:
|
|
self.camera_projection = camera_projection
|
|
|
|
# OPK
|
|
self.set_attr_from_xmp_tag('yaw', xtags, ['@drone-dji:FlightYawDegree', '@Camera:Yaw', 'Camera:Yaw'], float)
|
|
self.set_attr_from_xmp_tag('pitch', xtags, ['@drone-dji:GimbalPitchDegree', '@Camera:Pitch', 'Camera:Pitch'], float)
|
|
self.set_attr_from_xmp_tag('roll', xtags, ['@drone-dji:GimbalRollDegree', '@Camera:Roll', 'Camera:Roll'], float)
|
|
|
|
# Normalize YPR conventions (assuming nadir camera)
|
|
# Yaw: 0 --> top of image points north
|
|
# Yaw: 90 --> top of image points east
|
|
# Yaw: 270 --> top of image points west
|
|
# Pitch: 0 --> nadir camera
|
|
# Pitch: 90 --> camera is looking forward
|
|
# Roll: 0 (assuming gimbal)
|
|
if self.has_ypr():
|
|
if self.camera_make.lower() in ['dji', 'hasselblad']:
|
|
self.pitch = 90 + self.pitch
|
|
|
|
if self.camera_make.lower() == 'sensefly':
|
|
self.roll *= -1
|
|
|
|
except Exception as e:
|
|
log.ODM_WARNING("Cannot read XMP tags for %s: %s" % (self.filename, str(e)))
|
|
|
|
# self.set_attr_from_xmp_tag('center_wavelength', xtags, [
|
|
# 'Camera:CentralWavelength'
|
|
# ], float)
|
|
|
|
# self.set_attr_from_xmp_tag('bandwidth', xtags, [
|
|
# 'Camera:WavelengthFWHM'
|
|
# ], float)
|
|
|
|
# Sanitize band name since we use it in folder paths
|
|
self.band_name = re.sub('[^A-Za-z0-9]+', '', self.band_name)
|
|
|
|
self.compute_focal(tags, xtags)
|
|
self.compute_opk()
|
|
|
|
def compute_focal(self, tags, xtags):
|
|
try:
|
|
self.focal_ratio = self.extract_focal(self.camera_make, self.camera_model, tags, xtags)
|
|
except (IndexError, ValueError) as e:
|
|
log.ODM_WARNING("Cannot extract focal ratio for %s: %s" % (self.filename, str(e)))
|
|
|
|
def extract_focal(self, make, model, tags, xtags):
|
|
if make != "unknown":
|
|
# remove duplicate 'make' information in 'model'
|
|
model = model.replace(make, "")
|
|
|
|
sensor_string = (make.strip() + " " + model.strip()).strip().lower()
|
|
|
|
sensor_width = None
|
|
if ("EXIF FocalPlaneResolutionUnit" in tags and "EXIF FocalPlaneXResolution" in tags):
|
|
resolution_unit = self.float_value(tags["EXIF FocalPlaneResolutionUnit"])
|
|
mm_per_unit = get_mm_per_unit(resolution_unit)
|
|
if mm_per_unit:
|
|
pixels_per_unit = self.float_value(tags["EXIF FocalPlaneXResolution"])
|
|
if pixels_per_unit <= 0 and "EXIF FocalPlaneYResolution" in tags:
|
|
pixels_per_unit = self.float_value(tags["EXIF FocalPlaneYResolution"])
|
|
|
|
if pixels_per_unit > 0 and self.width is not None:
|
|
units_per_pixel = 1 / pixels_per_unit
|
|
sensor_width = self.width * units_per_pixel * mm_per_unit
|
|
|
|
focal_35 = None
|
|
focal = None
|
|
if "EXIF FocalLengthIn35mmFilm" in tags:
|
|
focal_35 = self.float_value(tags["EXIF FocalLengthIn35mmFilm"])
|
|
if "EXIF FocalLength" in tags:
|
|
focal = self.float_value(tags["EXIF FocalLength"])
|
|
if focal is None and "@aux:Lens" in xtags:
|
|
lens = self.get_xmp_tag(xtags, ["@aux:Lens"])
|
|
matches = re.search('([\d\.]+)mm', str(lens))
|
|
if matches:
|
|
focal = float(matches.group(1))
|
|
|
|
if focal_35 is not None and focal_35 > 0:
|
|
focal_ratio = focal_35 / 36.0 # 35mm film produces 36x24mm pictures.
|
|
else:
|
|
if not sensor_width:
|
|
sensor_width = sensor_data().get(sensor_string, None)
|
|
if sensor_width and focal:
|
|
focal_ratio = focal / sensor_width
|
|
else:
|
|
focal_ratio = 0.85
|
|
|
|
return focal_ratio
|
|
|
|
def set_attr_from_xmp_tag(self, attr, xmp_tags, tags, cast=None):
|
|
v = self.get_xmp_tag(xmp_tags, tags)
|
|
if v is not None:
|
|
if cast is None:
|
|
setattr(self, attr, v)
|
|
else:
|
|
# Handle fractions
|
|
if (cast == float or cast == int) and "/" in v:
|
|
v = self.try_parse_fraction(v)
|
|
setattr(self, attr, cast(v))
|
|
|
|
def get_xmp_tag(self, xmp_tags, tags):
|
|
if isinstance(tags, str):
|
|
tags = [tags]
|
|
|
|
for tag in tags:
|
|
if tag in xmp_tags:
|
|
t = xmp_tags[tag]
|
|
|
|
if isinstance(t, string_types):
|
|
return str(t)
|
|
elif isinstance(t, dict):
|
|
items = t.get('rdf:Seq', {}).get('rdf:li', {})
|
|
if items:
|
|
if isinstance(items, string_types):
|
|
return items
|
|
return " ".join(items)
|
|
elif isinstance(t, int) or isinstance(t, float):
|
|
return t
|
|
|
|
|
|
# From https://github.com/mapillary/OpenSfM/blob/master/opensfm/exif.py
|
|
def get_xmp(self, file):
|
|
img_bytes = file.read()
|
|
xmp_start = img_bytes.find(b'<x:xmpmeta')
|
|
xmp_end = img_bytes.find(b'</x:xmpmeta')
|
|
|
|
if xmp_start < xmp_end:
|
|
xmp_str = img_bytes[xmp_start:xmp_end + 12].decode('utf8')
|
|
try:
|
|
xdict = x2d.parse(xmp_str)
|
|
except ExpatError as e:
|
|
from bs4 import BeautifulSoup
|
|
xmp_str = str(BeautifulSoup(xmp_str, 'xml'))
|
|
xdict = x2d.parse(xmp_str)
|
|
log.ODM_WARNING("%s has malformed XMP XML (but we fixed it)" % self.filename)
|
|
xdict = xdict.get('x:xmpmeta', {})
|
|
xdict = xdict.get('rdf:RDF', {})
|
|
xdict = xdict.get('rdf:Description', {})
|
|
if isinstance(xdict, list):
|
|
return xdict
|
|
else:
|
|
return [xdict]
|
|
else:
|
|
return []
|
|
|
|
def dms_to_decimal(self, dms, sign):
|
|
"""Converts dms coords to decimal degrees"""
|
|
degrees, minutes, seconds = self.float_values(dms)
|
|
|
|
if degrees is not None and minutes is not None and seconds is not None:
|
|
return (-1 if sign.values[0] in 'SWsw' else 1) * (
|
|
degrees +
|
|
minutes / 60 +
|
|
seconds / 3600
|
|
)
|
|
|
|
def float_values(self, tag):
|
|
if isinstance(tag.values, list):
|
|
result = []
|
|
for v in tag.values:
|
|
if isinstance(v, int):
|
|
result.append(float(v))
|
|
elif v.den != 0:
|
|
result.append(float(v.num) / float(v.den))
|
|
else:
|
|
result.append(None)
|
|
return result
|
|
else:
|
|
return [float(tag.values.num) / float(tag.values.den) if tag.values.den != 0 else None]
|
|
|
|
def float_value(self, tag):
|
|
v = self.float_values(tag)
|
|
if len(v) > 0:
|
|
return v[0]
|
|
|
|
def int_values(self, tag):
|
|
if isinstance(tag.values, list):
|
|
return [int(v) for v in tag.values]
|
|
else:
|
|
return [int(tag.values)]
|
|
|
|
def int_value(self, tag):
|
|
v = self.int_values(tag)
|
|
if len(v) > 0:
|
|
return v[0]
|
|
|
|
def list_values(self, tag):
|
|
return " ".join(map(str, tag.values))
|
|
|
|
def try_parse_fraction(self, val):
|
|
parts = val.split("/")
|
|
if len(parts) == 2:
|
|
try:
|
|
num, den = map(float, parts)
|
|
return num / den if den != 0 else val
|
|
except ValueError:
|
|
pass
|
|
return val
|
|
|
|
def get_radiometric_calibration(self):
|
|
if isinstance(self.radiometric_calibration, str):
|
|
parts = self.radiometric_calibration.split(" ")
|
|
if len(parts) == 3:
|
|
return list(map(float, parts))
|
|
|
|
return [None, None, None]
|
|
|
|
def get_dark_level(self):
|
|
if self.black_level:
|
|
levels = np.array([float(v) for v in self.black_level.split(" ")])
|
|
return levels.mean()
|
|
|
|
def get_gain(self):
|
|
#(gain = ISO/100)
|
|
if self.iso_speed:
|
|
return self.iso_speed / 100.0
|
|
|
|
def get_vignetting_center(self):
|
|
if self.vignetting_center:
|
|
parts = self.vignetting_center.split(" ")
|
|
if len(parts) == 2:
|
|
return list(map(float, parts))
|
|
return [None, None]
|
|
|
|
def get_vignetting_polynomial(self):
|
|
if self.vignetting_polynomial:
|
|
parts = self.vignetting_polynomial.split(" ")
|
|
if len(parts) > 0:
|
|
coeffs = list(map(float, parts))
|
|
|
|
# Different camera vendors seem to use different ordering for the coefficients
|
|
if self.camera_make != "Sentera":
|
|
coeffs.reverse()
|
|
return coeffs
|
|
|
|
def get_utc_time(self):
|
|
if self.utc_time:
|
|
return datetime.fromtimestamp(self.utc_time / 1000, timezone.utc)
|
|
|
|
def get_photometric_exposure(self):
|
|
# H ~= (exposure_time) / (f_number^2)
|
|
if self.fnumber is not None and self.exposure_time is not None and self.exposure_time > 0 and self.fnumber > 0:
|
|
return self.exposure_time / (self.fnumber * self.fnumber)
|
|
|
|
def get_horizontal_irradiance(self):
|
|
if self.horizontal_irradiance is not None:
|
|
scale = 1.0 # Assumed
|
|
if self.irradiance_scale_to_si is not None:
|
|
scale = self.irradiance_scale_to_si
|
|
|
|
return self.horizontal_irradiance * scale
|
|
|
|
def get_sun_sensor(self):
|
|
if self.sun_sensor is not None:
|
|
# TODO: Presence of XMP:SunSensorExposureTime
|
|
# and XMP:SunSensorSensitivity might
|
|
# require additional logic. If these two tags are present,
|
|
# then sun_sensor is not in physical units?
|
|
return self.sun_sensor / 65535.0 # normalize uint16 (is this correct?)
|
|
elif self.spectral_irradiance is not None:
|
|
scale = 1.0 # Assumed
|
|
if self.irradiance_scale_to_si is not None:
|
|
scale = self.irradiance_scale_to_si
|
|
|
|
return self.spectral_irradiance * scale
|
|
|
|
def get_dls_pose(self):
|
|
if self.dls_yaw is not None:
|
|
return [self.dls_yaw, self.dls_pitch, self.dls_roll]
|
|
return [0.0, 0.0, 0.0]
|
|
|
|
def get_bit_depth_max(self):
|
|
if self.bits_per_sample:
|
|
return float(2 ** self.bits_per_sample)
|
|
|
|
return None
|
|
|
|
def get_capture_id(self):
|
|
# Use capture UUID first, capture time as fallback
|
|
if self.capture_uuid is not None:
|
|
return self.capture_uuid
|
|
|
|
return self.get_utc_time()
|
|
|
|
def get_gps_dop(self):
|
|
val = -9999
|
|
if self.gps_xy_stddev is not None:
|
|
val = self.gps_xy_stddev
|
|
if self.gps_z_stddev is not None:
|
|
val = max(val, self.gps_z_stddev)
|
|
if val > 0:
|
|
return val
|
|
|
|
return None
|
|
|
|
def override_gps_dop(self, dop):
|
|
self.gps_xy_stddev = self.gps_z_stddev = dop
|
|
|
|
def override_camera_projection(self, camera_projection):
|
|
if camera_projection in projections:
|
|
self.camera_projection = camera_projection
|
|
|
|
def is_thermal(self):
|
|
#Added for support M2EA camera sensor
|
|
if(self.camera_make == "DJI"):
|
|
return self.camera_model == "MAVIC2-ENTERPRISE-ADVANCED" and self.width == 640 and self.height == 512
|
|
return self.band_name.upper() in ["LWIR"] # TODO: more?
|
|
|
|
def camera_id(self):
|
|
return " ".join(
|
|
[
|
|
"v2",
|
|
self.camera_make.strip(),
|
|
self.camera_model.strip(),
|
|
str(int(self.width)),
|
|
str(int(self.height)),
|
|
self.camera_projection,
|
|
str(float(self.focal_ratio))[:6],
|
|
]
|
|
).lower()
|
|
|
|
def to_opensfm_exif(self):
|
|
capture_time = 0.0
|
|
if self.utc_time is not None:
|
|
capture_time = self.utc_time / 1000.0
|
|
|
|
gps = {}
|
|
if self.latitude is not None and self.longitude is not None:
|
|
gps['latitude'] = self.latitude
|
|
gps['longitude'] = self.longitude
|
|
if self.altitude is not None:
|
|
gps['altitude'] = self.altitude
|
|
else:
|
|
gps['altitude'] = 0.0
|
|
|
|
dop = self.get_gps_dop()
|
|
if dop is None:
|
|
dop = 10.0 # Default
|
|
|
|
gps['dop'] = dop
|
|
|
|
d = {
|
|
"make": self.camera_make,
|
|
"model": self.camera_model,
|
|
"width": self.width,
|
|
"height": self.height,
|
|
"projection_type": self.camera_projection,
|
|
"focal_ratio": self.focal_ratio,
|
|
"orientation": self.orientation,
|
|
"capture_time": capture_time,
|
|
"gps": gps,
|
|
"camera": self.camera_id()
|
|
}
|
|
|
|
if self.has_opk():
|
|
d['opk'] = {
|
|
'omega': self.omega,
|
|
'phi': self.phi,
|
|
'kappa': self.kappa
|
|
}
|
|
|
|
return d
|
|
|
|
def has_ypr(self):
|
|
return self.yaw is not None and \
|
|
self.pitch is not None and \
|
|
self.roll is not None
|
|
|
|
def has_opk(self):
|
|
return self.omega is not None and \
|
|
self.phi is not None and \
|
|
self.kappa is not None
|
|
|
|
def has_geo(self):
|
|
return self.latitude is not None and \
|
|
self.longitude is not None
|
|
|
|
def compute_opk(self):
|
|
if self.has_ypr() and self.has_geo():
|
|
y, p, r = math.radians(self.yaw), math.radians(self.pitch), math.radians(self.roll)
|
|
|
|
# Ref: New Calibration and Computing Method for Direct
|
|
# Georeferencing of Image and Scanner Data Using the
|
|
# Position and Angular Data of an Hybrid Inertial Navigation System
|
|
# by Manfred Bäumker
|
|
|
|
# YPR rotation matrix
|
|
cnb = np.array([[ math.cos(y) * math.cos(p), math.cos(y) * math.sin(p) * math.sin(r) - math.sin(y) * math.cos(r), math.cos(y) * math.sin(p) * math.cos(r) + math.sin(y) * math.sin(r)],
|
|
[ math.sin(y) * math.cos(p), math.sin(y) * math.sin(p) * math.sin(r) + math.cos(y) * math.cos(r), math.sin(y) * math.sin(p) * math.cos(r) - math.cos(y) * math.sin(r)],
|
|
[ -math.sin(p), math.cos(p) * math.sin(r), math.cos(p) * math.cos(r)],
|
|
])
|
|
|
|
# Convert between image and body coordinates
|
|
# Top of image pixels point to flying direction
|
|
# and camera is looking down.
|
|
# We might need to change this if we want different
|
|
# camera mount orientations (e.g. backward or sideways)
|
|
|
|
# (Swap X/Y, flip Z)
|
|
cbb = np.array([[0, 1, 0],
|
|
[1, 0, 0],
|
|
[0, 0, -1]])
|
|
|
|
delta = 1e-7
|
|
|
|
alt = self.altitude if self.altitude is not None else 0.0
|
|
p1 = np.array(ecef_from_lla(self.latitude + delta, self.longitude, alt))
|
|
p2 = np.array(ecef_from_lla(self.latitude - delta, self.longitude, alt))
|
|
xnp = p1 - p2
|
|
m = np.linalg.norm(xnp)
|
|
|
|
if m == 0:
|
|
log.ODM_WARNING("Cannot compute OPK angles, divider = 0")
|
|
return
|
|
|
|
# Unit vector pointing north
|
|
xnp /= m
|
|
|
|
znp = np.array([0, 0, -1]).T
|
|
ynp = np.cross(znp, xnp)
|
|
|
|
cen = np.array([xnp, ynp, znp]).T
|
|
|
|
# OPK rotation matrix
|
|
ceb = cen.dot(cnb).dot(cbb)
|
|
|
|
self.omega = math.degrees(math.atan2(-ceb[1][2], ceb[2][2]))
|
|
self.phi = math.degrees(math.asin(ceb[0][2]))
|
|
self.kappa = math.degrees(math.atan2(-ceb[0][1], ceb[0][0]))
|