kopia lustrzana https://github.com/OpenDroneMap/ODM
393 wiersze
16 KiB
Python
Executable File
393 wiersze
16 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# Author: Piero Toffanin
|
|
# License: AGPLv3
|
|
|
|
import os
|
|
import sys
|
|
sys.path.insert(0, os.path.join("..", "..", os.path.dirname(__file__)))
|
|
|
|
from math import sqrt
|
|
import rasterio
|
|
import numpy as np
|
|
import numpy.ma as ma
|
|
import multiprocessing
|
|
import argparse
|
|
import functools
|
|
from skimage.draw import line
|
|
from opensfm import dataset
|
|
|
|
default_dem_path = "odm_dem/dsm.tif"
|
|
default_outdir = "orthorectified"
|
|
default_image_list = "img_list.txt"
|
|
|
|
parser = argparse.ArgumentParser(description='Orthorectification Tool')
|
|
parser.add_argument('dataset',
|
|
type=str,
|
|
help='Path to ODM dataset')
|
|
parser.add_argument('--dem',
|
|
type=str,
|
|
default=default_dem_path,
|
|
help='Absolute path to DEM to use to orthorectify images. Default: %(default)s')
|
|
parser.add_argument('--no-alpha',
|
|
type=bool,
|
|
help="Don't output an alpha channel")
|
|
parser.add_argument('--interpolation',
|
|
type=str,
|
|
choices=('nearest', 'bilinear'),
|
|
default='bilinear',
|
|
help="Type of interpolation to use to sample pixel values.Default: %(default)s")
|
|
parser.add_argument('--outdir',
|
|
type=str,
|
|
default=default_outdir,
|
|
help="Output directory where to store results. Default: %(default)s")
|
|
parser.add_argument('--image-list',
|
|
type=str,
|
|
default=default_image_list,
|
|
help="Path to file that contains the list of image filenames to orthorectify. By default all images in a dataset are processed. Default: %(default)s")
|
|
parser.add_argument('--images',
|
|
type=str,
|
|
default="",
|
|
help="Comma-separated list of filenames to rectify. Use as an alternative to --image-list. Default: process all images.")
|
|
parser.add_argument('--threads',
|
|
type=int,
|
|
default=multiprocessing.cpu_count(),
|
|
help="Number of CPU processes to use. Default: %(default)s")
|
|
parser.add_argument('--skip-visibility-test',
|
|
type=bool,
|
|
help="Skip visibility testing (faster but leaves artifacts due to relief displacement)")
|
|
args = parser.parse_args()
|
|
|
|
dataset_path = args.dataset
|
|
dem_path = os.path.join(dataset_path, default_dem_path) if args.dem == default_dem_path else args.dem
|
|
interpolation = args.interpolation
|
|
with_alpha = not args.no_alpha
|
|
image_list = os.path.join(dataset_path, default_image_list) if args.image_list == default_image_list else args.image_list
|
|
|
|
cwd_path = os.path.join(dataset_path, default_outdir) if args.outdir == default_outdir else args.outdir
|
|
|
|
if not os.path.exists(cwd_path):
|
|
os.makedirs(cwd_path)
|
|
|
|
target_images = [] # all
|
|
|
|
if args.images:
|
|
target_images = list(map(str.strip, args.images.split(",")))
|
|
print("Processing %s images" % len(target_images))
|
|
elif args.image_list:
|
|
with open(image_list) as f:
|
|
target_images = list(filter(lambda filename: filename != '', map(str.strip, f.read().split("\n"))))
|
|
print("Processing %s images" % len(target_images))
|
|
|
|
if not os.path.exists(dem_path):
|
|
print("Whoops! %s does not exist. Provide a path to a valid DEM" % dem_path)
|
|
exit(1)
|
|
|
|
|
|
def bilinear_interpolate(im, x, y):
|
|
x = np.asarray(x)
|
|
y = np.asarray(y)
|
|
|
|
x0 = np.floor(x).astype(int)
|
|
x1 = x0 + 1
|
|
y0 = np.floor(y).astype(int)
|
|
y1 = y0 + 1
|
|
|
|
x0 = np.clip(x0, 0, im.shape[1]-1)
|
|
x1 = np.clip(x1, 0, im.shape[1]-1)
|
|
y0 = np.clip(y0, 0, im.shape[0]-1)
|
|
y1 = np.clip(y1, 0, im.shape[0]-1)
|
|
|
|
Ia = im[ y0, x0 ]
|
|
Ib = im[ y1, x0 ]
|
|
Ic = im[ y0, x1 ]
|
|
Id = im[ y1, x1 ]
|
|
|
|
wa = (x1-x) * (y1-y)
|
|
wb = (x1-x) * (y-y0)
|
|
wc = (x-x0) * (y1-y)
|
|
wd = (x-x0) * (y-y0)
|
|
|
|
return wa*Ia + wb*Ib + wc*Ic + wd*Id
|
|
|
|
# Read DEM
|
|
print("Reading DEM: %s" % dem_path)
|
|
with rasterio.open(dem_path) as dem_raster:
|
|
dem = dem_raster.read()[0]
|
|
dem_has_nodata = dem_raster.profile.get('nodata') is not None
|
|
|
|
if dem_has_nodata:
|
|
m = ma.array(dem, mask=dem==dem_raster.nodata)
|
|
dem_min_value = m.min()
|
|
dem_max_value = m.max()
|
|
else:
|
|
dem_min_value = dem.min()
|
|
dem_max_value = dem.max()
|
|
|
|
print("DEM Minimum: %s" % dem_min_value)
|
|
print("DEM Maximum: %s" % dem_max_value)
|
|
|
|
h, w = dem.shape
|
|
|
|
crs = dem_raster.profile.get('crs')
|
|
dem_offset_x, dem_offset_y = (0, 0)
|
|
|
|
if crs:
|
|
print("DEM has a CRS: %s" % str(crs))
|
|
|
|
# Read coords.txt
|
|
coords_file = os.path.join(dataset_path, "odm_georeferencing", "coords.txt")
|
|
if not os.path.exists(coords_file):
|
|
print("Whoops! Cannot find %s (we need that!)" % coords_file)
|
|
exit(1)
|
|
|
|
with open(coords_file) as f:
|
|
l = f.readline() # discard
|
|
|
|
# second line is a northing/easting offset
|
|
l = f.readline().rstrip()
|
|
dem_offset_x, dem_offset_y = map(float, l.split(" "))
|
|
|
|
print("DEM offset: (%s, %s)" % (dem_offset_x, dem_offset_y))
|
|
|
|
print("DEM dimensions: %sx%s pixels" % (w, h))
|
|
|
|
# Read reconstruction
|
|
udata = dataset.UndistortedDataSet(dataset.DataSet(os.path.join(dataset_path, "opensfm")), undistorted_data_path=os.path.join(dataset_path, "opensfm", "undistorted"))
|
|
reconstructions = udata.load_undistorted_reconstruction()
|
|
if len(reconstructions) == 0:
|
|
raise Exception("No reconstructions available")
|
|
|
|
max_workers = args.threads
|
|
print("Using %s threads" % max_workers)
|
|
|
|
reconstruction = reconstructions[0]
|
|
for shot in reconstruction.shots.values():
|
|
if len(target_images) == 0 or shot.id in target_images:
|
|
|
|
print("Processing %s..." % shot.id)
|
|
shot_image = udata.load_undistorted_image(shot.id)
|
|
|
|
r = shot.pose.get_rotation_matrix()
|
|
Xs, Ys, Zs = shot.pose.get_origin()
|
|
cam_grid_y, cam_grid_x = dem_raster.index(Xs + dem_offset_x, Ys + dem_offset_y)
|
|
|
|
a1 = r[0][0]
|
|
b1 = r[0][1]
|
|
c1 = r[0][2]
|
|
a2 = r[1][0]
|
|
b2 = r[1][1]
|
|
c2 = r[1][2]
|
|
a3 = r[2][0]
|
|
b3 = r[2][1]
|
|
c3 = r[2][2]
|
|
|
|
if not args.skip_visibility_test:
|
|
distance_map = np.full((h, w), np.nan)
|
|
|
|
for j in range(0, h):
|
|
for i in range(0, w):
|
|
distance_map[j][i] = sqrt((cam_grid_x - i) ** 2 + (cam_grid_y - j) ** 2)
|
|
distance_map[distance_map==0] = 1e-7
|
|
|
|
print("Camera pose: (%f, %f, %f)" % (Xs, Ys, Zs))
|
|
|
|
img_h, img_w, num_bands = shot_image.shape
|
|
half_img_w = (img_w - 1) / 2.0
|
|
half_img_h = (img_h - 1) / 2.0
|
|
print("Image dimensions: %sx%s pixels" % (img_w, img_h))
|
|
f = shot.camera.focal * max(img_h, img_w)
|
|
has_nodata = dem_raster.profile.get('nodata') is not None
|
|
|
|
def process_pixels(step):
|
|
imgout = np.full((num_bands, dem_bbox_h, dem_bbox_w), np.nan)
|
|
|
|
minx = dem_bbox_w
|
|
miny = dem_bbox_h
|
|
maxx = 0
|
|
maxy = 0
|
|
|
|
for j in range(dem_bbox_miny, dem_bbox_maxy + 1):
|
|
if j % max_workers == step:
|
|
im_j = j - dem_bbox_miny
|
|
|
|
for i in range(dem_bbox_minx, dem_bbox_maxx + 1):
|
|
im_i = i - dem_bbox_minx
|
|
|
|
# World coordinates
|
|
Za = dem[j][i]
|
|
|
|
# Skip nodata
|
|
if has_nodata and Za == dem_raster.nodata:
|
|
continue
|
|
|
|
Xa, Ya = dem_raster.xy(j, i)
|
|
|
|
# Remove offset (our cameras don't have the geographic offset)
|
|
Xa -= dem_offset_x
|
|
Ya -= dem_offset_y
|
|
|
|
# Colinearity function http://web.pdx.edu/~jduh/courses/geog493f14/Week03.pdf
|
|
dx = (Xa - Xs)
|
|
dy = (Ya - Ys)
|
|
dz = (Za - Zs)
|
|
|
|
den = a3 * dx + b3 * dy + c3 * dz
|
|
x = half_img_w - (f * (a1 * dx + b1 * dy + c1 * dz) / den)
|
|
y = half_img_h - (f * (a2 * dx + b2 * dy + c2 * dz) / den)
|
|
|
|
if x >= 0 and y >= 0 and x <= img_w - 1 and y <= img_h - 1:
|
|
# Visibility test
|
|
if not args.skip_visibility_test:
|
|
check_dem_points = np.column_stack(line(i, j, cam_grid_x, cam_grid_y))
|
|
check_dem_points = check_dem_points[np.all(np.logical_and(np.array([0, 0]) <= check_dem_points, check_dem_points < [w, h]), axis=1)]
|
|
|
|
visible = True
|
|
for p in check_dem_points:
|
|
ray_z = Zs + (distance_map[p[1]][p[0]] / distance_map[j][i]) * dz
|
|
if ray_z > dem_max_value:
|
|
break
|
|
|
|
if dem[p[1]][p[0]] > ray_z:
|
|
visible = False
|
|
break
|
|
if not visible:
|
|
continue
|
|
|
|
if interpolation == 'bilinear':
|
|
xi = img_w - 1 - x
|
|
yi = img_h - 1 - y
|
|
values = bilinear_interpolate(shot_image, xi, yi)
|
|
else:
|
|
# nearest
|
|
xi = img_w - 1 - int(round(x))
|
|
yi = img_h - 1 - int(round(y))
|
|
values = shot_image[yi][xi]
|
|
|
|
# We don't consider all zero values (pure black)
|
|
# to be valid sample values. This will sometimes miss
|
|
# valid sample values.
|
|
|
|
if not np.all(values == 0):
|
|
minx = min(minx, im_i)
|
|
miny = min(miny, im_j)
|
|
maxx = max(maxx, im_i)
|
|
maxy = max(maxy, im_j)
|
|
|
|
for b in range(num_bands):
|
|
imgout[b][im_j][im_i] = values[b]
|
|
|
|
# for b in range(num_bands):
|
|
# minx = min(minx, im_i)
|
|
# miny = min(miny, im_j)
|
|
# maxx = max(maxx, im_i)
|
|
# maxy = max(maxy, im_j)
|
|
# imgout[b][im_j][im_i] = 255
|
|
return (imgout, (minx, miny, maxx, maxy))
|
|
|
|
# Compute bounding box of image coverage
|
|
# assuming a flat plane at Z = min Z
|
|
# (Otherwise we have to scan the entire DEM)
|
|
# The Xa,Ya equations are just derived from the colinearity equations
|
|
# solving for Xa and Ya instead of x,y
|
|
def dem_coordinates(cpx, cpy):
|
|
"""
|
|
:param cpx principal point X (image coordinates)
|
|
:param cpy principal point Y (image coordinates)
|
|
"""
|
|
Za = dem_min_value
|
|
m = (a3*b1*cpy - a1*b3*cpy - (a3*b2 - a2*b3)*cpx - (a2*b1 - a1*b2)*f)
|
|
Xa = dem_offset_x + (m*Xs + (b3*c1*cpy - b1*c3*cpy - (b3*c2 - b2*c3)*cpx - (b2*c1 - b1*c2)*f)*Za - (b3*c1*cpy - b1*c3*cpy - (b3*c2 - b2*c3)*cpx - (b2*c1 - b1*c2)*f)*Zs)/m
|
|
Ya = dem_offset_y + (m*Ys - (a3*c1*cpy - a1*c3*cpy - (a3*c2 - a2*c3)*cpx - (a2*c1 - a1*c2)*f)*Za + (a3*c1*cpy - a1*c3*cpy - (a3*c2 - a2*c3)*cpx - (a2*c1 - a1*c2)*f)*Zs)/m
|
|
|
|
y, x = dem_raster.index(Xa, Ya)
|
|
return (x, y)
|
|
|
|
dem_ul = dem_coordinates(-(img_w - 1) / 2.0, -(img_h - 1) / 2.0)
|
|
dem_ur = dem_coordinates((img_w - 1) / 2.0, -(img_h - 1) / 2.0)
|
|
dem_lr = dem_coordinates((img_w - 1) / 2.0, (img_h - 1) / 2.0)
|
|
dem_ll = dem_coordinates(-(img_w - 1) / 2.0, (img_h - 1) / 2.0)
|
|
dem_bbox = [dem_ul, dem_ur, dem_lr, dem_ll]
|
|
dem_bbox_x = np.array(list(map(lambda xy: xy[0], dem_bbox)))
|
|
dem_bbox_y = np.array(list(map(lambda xy: xy[1], dem_bbox)))
|
|
|
|
dem_bbox_minx = min(w - 1, max(0, dem_bbox_x.min()))
|
|
dem_bbox_miny = min(h - 1, max(0, dem_bbox_y.min()))
|
|
dem_bbox_maxx = min(w - 1, max(0, dem_bbox_x.max()))
|
|
dem_bbox_maxy = min(h - 1, max(0, dem_bbox_y.max()))
|
|
|
|
dem_bbox_w = 1 + dem_bbox_maxx - dem_bbox_minx
|
|
dem_bbox_h = 1 + dem_bbox_maxy - dem_bbox_miny
|
|
|
|
print("Iterating over DEM box: [(%s, %s), (%s, %s)] (%sx%s pixels)" % (dem_bbox_minx, dem_bbox_miny, dem_bbox_maxx, dem_bbox_maxy, dem_bbox_w, dem_bbox_h))
|
|
|
|
if max_workers > 1:
|
|
with multiprocessing.Pool(max_workers) as p:
|
|
results = p.map(process_pixels, range(max_workers))
|
|
else:
|
|
results = [process_pixels(0)]
|
|
|
|
results = list(filter(lambda r: r[1][0] <= r[1][2] and r[1][1] <= r[1][3], results))
|
|
|
|
# Merge image
|
|
imgout, _ = results[0]
|
|
|
|
for j in range(dem_bbox_miny, dem_bbox_maxy + 1):
|
|
im_j = j - dem_bbox_miny
|
|
resimg, _ = results[j % max_workers]
|
|
for b in range(num_bands):
|
|
imgout[b][im_j] = resimg[b][im_j]
|
|
|
|
# Merge bounds
|
|
minx = dem_bbox_w
|
|
miny = dem_bbox_h
|
|
maxx = 0
|
|
maxy = 0
|
|
|
|
for _, bounds in results:
|
|
minx = min(bounds[0], minx)
|
|
miny = min(bounds[1], miny)
|
|
maxx = max(bounds[2], maxx)
|
|
maxy = max(bounds[3], maxy)
|
|
|
|
print("Output bounds: (%s, %s), (%s, %s) pixels" % (minx, miny, maxx, maxy))
|
|
if minx <= maxx and miny <= maxy:
|
|
imgout = imgout[:,miny:maxy+1,minx:maxx+1]
|
|
|
|
if with_alpha:
|
|
alpha = np.zeros((imgout.shape[1], imgout.shape[2]), dtype=np.uint8)
|
|
|
|
# Set all not-NaN indices to 255
|
|
alpha[~np.isnan(imgout[0])] = 255
|
|
|
|
# Cast
|
|
imgout = imgout.astype(shot_image.dtype)
|
|
|
|
dem_transform = dem_raster.profile['transform']
|
|
offset_x, offset_y = dem_raster.xy(dem_bbox_miny + miny, dem_bbox_minx + minx, offset='ul')
|
|
|
|
profile = {
|
|
'driver': 'GTiff',
|
|
'width': imgout.shape[2],
|
|
'height': imgout.shape[1],
|
|
'count': num_bands + 1 if with_alpha else num_bands,
|
|
'dtype': imgout.dtype.name,
|
|
'transform': rasterio.transform.Affine(dem_transform[0], dem_transform[1], offset_x,
|
|
dem_transform[3], dem_transform[4], offset_y),
|
|
'nodata': None,
|
|
'crs': crs
|
|
}
|
|
|
|
outfile = os.path.join(cwd_path, shot.id)
|
|
if not outfile.endswith(".tif"):
|
|
outfile = outfile + ".tif"
|
|
|
|
with rasterio.open(outfile, 'w', BIGTIFF="IF_SAFER", **profile) as wout:
|
|
for b in range(num_bands):
|
|
wout.write(imgout[b], b + 1)
|
|
if with_alpha:
|
|
wout.write(alpha, num_bands + 1)
|
|
|
|
print("Wrote %s" % outfile)
|
|
else:
|
|
print("Cannot orthorectify image (is the image inside the DEM bounds?)")
|