OpenDroneMap-ODM/opendm/multispectral.py

141 wiersze
4.8 KiB
Python

from opendm import dls
import math
# Loosely based on https://github.com/micasense/imageprocessing/blob/master/micasense/utils.py
def dn_to_radiance(photo, image):
"""
Convert Digital Number values to Radiance values
:param photo ODM_Photo
:param image numpy array containing image data
:return numpy array with radiance image values
"""
# Handle thermal bands (experimental)
if photo.band_name == 'LWIR':
image -= (273.15 * 100.0) # Convert Kelvin to Celsius
image = image.astype(float) * 0.01
return image
# All others
a1, a2, a3 = photo.get_radiometric_calibration()
dark_level = photo.get_dark_level()
exposure_time = photo.exposure_time
gain = photo.get_gain()
V, x, y = vignette_map(photo)
if x is None:
x, y = np.meshgrid(np.arange(photo.width), np.arange(photo.height))
if dark_level is not None:
image -= dark_level
if V is not None:
# vignette correction
image *= V
if exposure_time and a2 is not None and a3 is not None:
# row gradient correction
R = 1.0 / (1.0 + a2 * y / exposure_time - a3 * y)
image *= R
# Floor any negative radiances to zero (can happend due to noise around blackLevel)
if dark_level is not None:
image[image < 0] = 0
# apply the radiometric calibration - i.e. scale by the gain-exposure product and
# multiply with the radiometric calibration coefficient
# need to normalize by 2^16 for 16 bit images
# because coefficients are scaled to work with input values of max 1.0
bps = photo.bits_per_sample
if bps:
bit_depth_max = float(2 ** bps)
else:
# Infer from array dtype
info = np.iinfo(image.dtype)
bit_depth_max = info.max - info.min
image = image.astype(float)
if gain is not None and exposure_time is not None:
image /= (gain * exposure_time)
if a1 is not None:
image *= a1
image /= bit_depth_max
return image
def vignette_map(photo):
x_vc, y_vc = photo.get_vignetting_center()
polynomial = photo.get_vignetting_polynomial()
if x_vc and polynomial:
# reverse list and append 1., so that we can call with numpy polyval
polynomial.reverse()
polynomial.append(1.0)
vignette_poly = np.array(polynomial)
# perform vignette correction
# get coordinate grid across image
x, y = np.meshgrid(np.arange(photo.width), np.arange(photo.height))
# meshgrid returns transposed arrays
x = x.T
y = y.T
# compute matrix of distances from image center
r = np.hypot((x - x_vc), (y - y_vc))
# compute the vignette polynomial for each distance - we divide by the polynomial so that the
# corrected image is image_corrected = image_original * vignetteCorrection
vignette = 1.0 / np.polyval(vignette_poly, r)
return vignette, x, y
return None, None, None
def dn_to_reflectance(photo, image, use_sun_sensor=True):
radiance = dn_to_radiance(photo, image)
irradiance_scale = compute_irradiance_scale_factor(photo, use_sun_sensor=use_sun_sensor)
return radiance * irradiance_scale
def compute_irradiance_scale_factor(photo, use_sun_sensor=True):
# Thermal?
if photo.band_name == "LWIR":
return 1.0
if photo.irradiance is not None:
horizontal_irradiance = photo.irradiance
return math.pi / horizontal_irradiance
if use_sun_sensor:
# Estimate it
dls_orientation_vector = np.array([0,0,-1])
sun_vector_ned, sensor_vector_ned, sun_sensor_angle, \
solar_elevation, solar_azimuth = dls.compute_sun_angle([photo.latitude, photo.longitude],
(0,0,0), # TODO: add support for sun sensor pose
photo.utc_time,
dls_orientation_vector)
angular_correction = dls.fresnel(sun_sensor_angle)
# TODO: support for direct and scattered irradiance
direct_to_diffuse_ratio = 6.0 # Assumption
spectral_irradiance = photo.sun_sensor # TODO: support for XMP:SpectralIrradiance
percent_diffuse = 1.0 / direct_to_diffuse_ratio
sensor_irradiance = spectral_irradiance / angular_correction
# find direct irradiance in the plane normal to the sun
untilted_direct_irr = sensor_irradiance / (percent_diffuse + np.cos(sun_sensor_angle))
direct_irradiance = untilted_direct_irr
scattered_irradiance = untilted_direct_irr*percent_diffuse
# compute irradiance on the ground using the solar altitude angle
horizontal_irradiance = direct_irradiance * np.sin(solar_elevation) + scattered_irradiance
return math.pi / horizontal_irradiance
return 1.0